948 resultados para Renewable feedstocks
Resumo:
In the past decade, Spain’s generous incentive system for renewable energy production attracted substantial foreign and national investment. However, when the global financial crisis hit, and the consequent reduction of electricity consumption, the incentives began to cause a tariff deficit in the electricity system, leading the Spanish government to cut back and then eliminate the incentives. In the wake of losses, international investors turned to investment arbitration, while national investors could only present their claims before Spanish courts. The result was a potential for differential treatment between national and foreign investors. This paper examines the incentive regime and the government’s changes to it in order to understand the investors’ claims and the reasoning that resulted in their rejections, both in national courts and in the only arbitration award issued up to now. The paper concludes with a discussion of the effect of the renewable energies situation on the investment arbitration debate within Spanish civil society.
Resumo:
Sustainability and responsible environmental behaviour constitute a vital premise in the development of the humankind. In fact, during last decades, the global energetic scenario is evolving towards a scheme with increasing relevance of Renewable Energy Sources (RES) like photovoltaic, wind, biomass and hydrogen. Furthermore, hydrogen is an energy carrier which constitutes a mean for long-term energy storage. The integration of hydrogen with local RES contributes to distributed power generation and early introduction of hydrogen economy. Intermittent nature of many of RES, for instance solar and wind sources, impose the development of a management and control strategy to overcome this drawback. This strategy is responsible of providing a reliable, stable and efficient operation of the system. To implement such strategy, a monitoring system is required.The present paper aims to contribute to experimentally validate LabVIEW as valuable tool to develop monitoring platforms in the field of RES-based facilities. To this aim, a set of real systems successfully monitored is exposed.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
The use of environmentally friendly products increased the interest in renewable resources as alternatives to petrochemical products. Polyhydroxyalkanoates (PHAs) are examples of such promising products, as they are biodegradable polymers with numerous potential applications. PHA production approach consists of using an open mixed microbial culture (MMC) and inexpensive feedstocks (waste or industry byproducts feedstock). The PHA process generally comprises three stages: (1) acidogenic fermentation (AF) stage (conversion of organic carbon into fermentation products); (2) culture selection stage (enrichment in PHA-storing organisms by applying Feast and Famine regime); and (3) PHA production stage (PHA accumulation up to the culture’s maximum capacity). AF of protein-rich residues results in ammonia-rich fermented streams, which can be presented as a challenge for the PHA production stage. The presence of ammonia during this stage may induce organisms to grow instead of producing PHAs. For this reason, the assessment of the effect of a high content of ammonia on PHA production it is the utmost importance. The main goal of the current project is to select a MMC enriched in PHA-accumulating organisms in conditions of high ammonia content and to evaluate the effects of ammonia presence during PHA accumulation. The culture was selected applying the Feast & Famine strategy, and fed, firstly, using a synthetic mixture of VFAs and later using a fermented stream obtained from the fermentation of protein-rich raw materials. The selected culture could accumulate up to 24% PHA per VSS with the synthetic mixture of VFAs and up to 29% for the real fermented stream. The PHA accumulation resulted in different production in the presence and absence of ammonia. Regarding to the synthetic feed, 59%wt. PHA (VSS basis) in the absence of ammonia, and 55%wt. (VSS basis) in the presence, were obtained. For the real feed, the PHA content was about 40%wt. (VSS basis) in both reactors.
Resumo:
Batteries should be refined depending on their application for a future in which the sustainable energy demand increases. On the one hand, it is fundamental to improve their safety, prevent failures, increase energy density, and reduce production costs. On the other hand, new battery materials and architecture are required to satisfy the growing demand. This thesis explores different electrochemical energy storage systems and new methodologies to investigate complex and dynamic processes. Lithium-ion batteries are described in all their cell components. In these systems, this thesis investigates negative electrodes. Both the development of new sustainable materials and new in situ electrode characterization methods were explored. One strategy to achieve high-energy systems is employing lithium metal anodes. In this framework, ammonium hexafluorophosphate is demonstrated to be a suitable additive for stabilizing the interphase and preventing uncontrolled dendritic deposition. Deposition/stripping cycles, electrochemical impedance spectroscopy, in situ optical microscopy, and operando confocal Raman spectroscopy have been used to study lithium metal-electrolyte interphase in the presence of the additive. Redox Flow Batteries (RFBs) are proposed as a sustainable alternative for stationary applications. An all-copper aqueous RFB (CuRFB) has been studied in all its aspects. For the electrolyte optimization, spectro-electrochemical tests in diluted solution have been used to get information on the electrolyte’s electrochemical behaviour with different copper complexes distributions. In concentrated solutions, the effects of copper-to-ligand ratios, the concentration, and the counter-ion of the complexing agent were evaluated. Electrode thermal treatment was optimized, finding a compromise between the electrochemical performance and the carbon footprint. On the membrane side, a new method for permeability studies was designed using scanning electrochemical microscopy (SECM). The Cu(II) permeability of several membranes was tested, obtaining direct visualization of Cu(II) concentration in space. Also, two spectrophotometric approaches were designed for SoC monitoring systems for negative and positive half-cells.
Resumo:
Energy transition is the response of humankind to the concerning effects of fossil fuels depletion, climate change and energy insecurity, and calls for a deep penetration of renewable energy sources (RESs) in power systems and industrial processes. Despite the high potentials, low impacts and long-term availability, RESs present some limits which need to be overcome, such as the strong variability and difficult predictability, which result in scarce reliability and difficult applicability in steady-state processes. Some technological solutions relate to energy storage systems, equipment electrification and hybrid systems deployment, thus accomplishing distributed generation even in remote sites as offshore. However, all of these actions cannot disregard sustainability, which represents a founding principle for any project, bringing together economics, reliability and environmental protection. To entail sustainability in RESs-based innovative projects, previous knowledge and tools are often not tailored or miss the novel objectives. This research proposes three methodological approaches, bridging the gaps. The first contribute adapts literature-based indicators of inherent safety and energy efficiency to capture the specificities of novel process plants and hybrid systems. Minor case studies dealing with novel P2X processes exemplify the application of these novel indicators. The second method guides the conceptual design of hybrid systems for the valorisation of a RES in a site, by considering the sustainability performances of alternative design options. Its application is demonstrated through the comparison of two offshore sites where wave energy can be valorised. Finally, “OHRES”, a comprehensive tool for the sustainable optimisation of hybrid renewable energy systems is proposed. “OHRES” hinges on the exploitation of multiple RESs, by converting ex-post sustainability indicators into discrimination markers screening a large number of possible system configurations, according to the location features. Five case studies demonstrate “OHRES” versatility in the sustainable valorisation of multiple RESs.
Development of processes for the valorization of lignocellulosic biomass based on renewable energies
Resumo:
The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.
Resumo:
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Resumo:
Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.
Resumo:
The rice husk and its ash are abundant and renewable and can be used to obtain alternative building materials. An increase in the consumption of such waste could help minimize the environmental problems from their improper disposal. This study aimed to evaluate the use of ashes as a cargo mineral (filler). However, the rice husk chemically interferes in the conduct of the based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash), which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression) and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface), were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs). The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere), around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.
Resumo:
Glioxal pode ser obtido a partir de biomassa (como da oxidação de lipídeos) e não é tóxico ou volátil, tendo sido por isso utilizado no presente trabalho como substituto de formaldeído na preparação de resina fenólica do tipo novolaca, sendo usado como catalisador o ácido oxálico, que também pode ser obtido de fontes renováveis. A resina glioxal-fenol foi utilizada na preparação de compósitos reforçados com celulose microcristalina (CM, 30, 50 e 70% em massa), uma celulose com elevada área superficial. As imagens de microscopia eletrônica de varredura (MEV) das superfícies fraturadas demonstraram que os compósitos apresentaram boa interface reforço/matriz, consequência da elevada área superficial da CM e presença de grupos polares (hidroxilas) tanto na matriz como na celulose, o que permitiu a formação de ligações hidrogênio, favorecendo a compatibilidade entre ambas. A análise térmica dinâmico-mecânica (DMTA) demonstrou que todos os compósitos apresentaram elevado módulo de armazenamento à temperatura ambiente. Além disso, o compósito reforçado com 30% de CM apresentou baixa absorção de água, comparável à do termorrígido fenólico, que é utilizado em escala industrial. Os resultados demonstraram que compósitos com boas propriedades podem ser preparados usando elevada proporção de materiais obtidos de biomassa.
Resumo:
The aim of this research was to study the biodegradation of a polymer derived from castor oil, which is a renewable, natural material that is a practical alternative for the replacement of traditional polyurethane foams. Due to its molecular structure, which contains polyester segments derived from vegetable oil, the polymeric surface is susceptible to microorganism attack. This study tested the biological degrading agent that was in contact with the microorganisms resulting from microbiological grease degrading agents, when foam was inoculated. Solid-media agar-plate tests were conducted for their potential to evaluate the biodegradation of polymeric particles by specific strains of microorganisms during 216 hours. The growth rate was defined. This technique provides a way of distinguishing the degradation abilities of microorganisms from the degradability of materials.
Resumo:
Production of ethanol from biomass fermentation has gained much attention recently. Biomass cellulosic material is first converted into glucose either by chemical or by enzymatic process, and then glucose is fermented to ethanol. Considering the current scenario, where many efforts are devoted for the search of green routes to obtaining ethanol from renewable sources, this review presents the relationship between structure and properties of cellulosic material, pre-treatments and hydrolysis of cellulosic material, and structure and function of cellulase enzyme complex.
Resumo:
The cycle of fossil fuels as an energy source for mankind is approaching its end. Finite resources, coupled with greenhouse gas, have led to an increased effort in the search for alternative renewable energy sources. Brazil has a leading position, due to a 46% participation of renewable sources in its primary energy supply, compared to the global average of 12%. The expansion of the renewable sources in Brazil depends on medium and long term planning, and a large volume of investments. The present financial crisis will have major effects in the energy market. Despite a negative initial impact, it is expected that the rearrangement of the financial system will ultimately lead to an expansion in the use of renewable energy sources. Brazil is a tropical country, with the largest biodiversity in our planet and excellent conditions to expand the use of all forms of renewable sources.