980 resultados para Remote sensing techniques
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
Il versante sinistro delle Gole di Scascoli (BO) è caratterizzato da una marcata tendenza evolutiva per crollo e ribaltamento. Negli ultimi 25 anni si sono verificati eventi parossistici con volumi di roccia coinvolti rispettivamente di 7000 m3, 20000 m3 e 35000 m3. Il sito è di grande rilevanza a causa del forte fattore di rischio rappresentato per la strada di fondovalle ad esso adiacente. Il lavoro di tesi è stato finalizzato allo studio dei fenomeni di versante di una parete rocciosa inaccessibile nota in letteratura come “ex-Mammellone 1” mediante tecniche di telerilevamento quali TLS (Terrestrial Laser Scanning) e CRP (Close Range Photogrammetry) al fine affiancare il rilievo geomeccanico soggettivo dell’area svolto nel 2003 da ENSER Srl in seguito ai fenomeni di crollo del 2002. Lo sviluppo di tecnologie e metodi innovativi per l’analisi territoriale basata sull’impiego di UAV (Unmanned Aerial Vehicle, meglio noti come Droni), associata alle tecniche di fotogrammetria digitale costituisce un elemento di notevole ausilio nelle pratiche di rilevamento in campo di sicurezza e tempi di esecuzione. Il lavoro ha previsto una prima fase di rilevamento areo-fotogrammetrico mediante strumentazione professionale e amatoriale, a cui è seguita l’elaborazione dei rispettivi modelli. I diversi output sono stati confrontati dal punto di vista geomorfologico, geometrico, geomeccanico e di modellazione numerica di caduta massi. Dal lavoro è stato possibile indagare l’evoluzione morfologica del sito in esame negli ultimi 10 anni, confrontare diversi metodi di rilevamento e analisi dati, sperimentare la robustezza e ripetibilità geometrica del metodo fotogrammetrico per il rilievo di fronti rocciosi e mettere a punto un metodo semiautomatico di individuazione e analisi delle giaciture delle discontinuità.
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.
Resumo:
With recent advances in remote sensing processing technology, it has become more feasible to begin analysis of the enormous historic archive of remotely sensed data. This historical data provides valuable information on a wide variety of topics which can influence the lives of millions of people if processed correctly and in a timely manner. One such field of benefit is that of landslide mapping and inventory. This data provides a historical reference to those who live near high risk areas so future disasters may be avoided. In order to properly map landslides remotely, an optimum method must first be determined. Historically, mapping has been attempted using pixel based methods such as unsupervised and supervised classification. These methods are limited by their ability to only characterize an image spectrally based on single pixel values. This creates a result prone to false positives and often without meaningful objects created. Recently, several reliable methods of Object Oriented Analysis (OOA) have been developed which utilize a full range of spectral, spatial, textural, and contextual parameters to delineate regions of interest. A comparison of these two methods on a historical dataset of the landslide affected city of San Juan La Laguna, Guatemala has proven the benefits of OOA methods over those of unsupervised classification. Overall accuracies of 96.5% and 94.3% and F-score of 84.3% and 77.9% were achieved for OOA and unsupervised classification methods respectively. The greater difference in F-score is a result of the low precision values of unsupervised classification caused by poor false positive removal, the greatest shortcoming of this method.
Resumo:
The high cost of maize in Kenya is basically driven by East African regional commodity demand forces and agricultural drought. The production of maize, which is a common staple food in Kenya, is greatly affected by agricultural drought. However, calculations of drought risk and impact on maize production in Kenya is limited by the scarcity of reliable rainfall data. The objective of this study was to apply a novel hyperspectral remote sensing method to modelling temporal fluctuations of maize production and prices in five markets in Kenya. SPOT-VEGETATION NDVI time series were corrected for seasonal effects by computing the standardized NDVI anomalies. The maize residual price time series was further related to the NDVI seasonal anomalies using a multiple linear regression modelling approach. The result shows a moderately strong positive relationship (0.67) between residual price series and global maize prices. Maize prices were high during drought periods (i.e. negative NDVI anomalies) and low during wet seasons (i.e. positive NDVI anomalies). This study concludes that NDVI is a good index for monitoring the evolution of maize prices and food security emergency planning in Kenya. To obtain a very strong correlation for the relationship between the wholesale maize price and the global maize price, future research could consider adding other price-driving factors into the regression models.
Resumo:
tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.
Resumo:
Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.
Resumo:
Snow plays a crucial role in the Earth's hydrological cycle and energy budget, making its monitoring necessary. In this context, ground-based radars and in situ instruments are essential thanks to their spatial coverage, resolution, and temporal sampling. Deep understanding and reliable measurements of snow properties are crucial over Antarctica to assess potential future changes of the surface mass balance (SMB) and define the contribution of the Antarctic ice sheet on sea-level rise. However, despite its key role, Antarctic precipitation is poorly investigated due to the continent's inaccessibility and extreme environment. In this framework, this Thesis aims to contribute to filling this gap by in-depth characterization of Antarctic precipitation at the Mario Zucchelli station from different points of view: microphysical features, quantitative precipitation estimation (QPE), vertical structure of precipitation, and scavenging properties. For this purpose, a K-band vertically pointing radar collocated with a laser disdrometer and an optical particle counter (OPC) were used. The radar probed the lowest atmospheric layers with high vertical resolution, allowing the first trusted measurement at only 105 m height. Disdrometer and OPC provided information on the particle size distribution and aerosol concentrations. An innovative snow classification methodology was designed by comparing the radar reflectivity (Ze) and disdrometer-derived reflectivity by means of DDA simulations. Results of classification were exploited in QPE through appropriate Ze-snow rate relationships. The accuracy of the resulting QPE was benchmarked against a collocated weighing gauge. Vertical radar profiles were also investigated to highlight hydrometeors' sublimation and growth processes. Finally, OPC and disdrometer data allowed providing the first-ever estimates of scavenging properties of Antarctic snowfall. Results presented in this Thesis give rise to advances in knowledge of the characteristics of snowfall in Antarctica, contributing to a better assessment of the SMB of the Antarctic ice sheet, the major player in the global sea-level rise.
Resumo:
The spectrum of radiofrequency is distributed in such a way that it is fixed to certain users called licensed users and it cannot be used by unlicensed users even though the spectrum is not in use. This inefficient use of spectrum leads to spectral holes. To overcome the problem of spectral holes and increase the efficiency of the spectrum, Cognitive Radio (CR) was used and all simulation work was done on MATLAB. Here analyzed the performance of different spectrum sensing techniques as Match filter based spectrum sensing and energy detection, which depend on various factors, systems such as Numbers of input, signal-to-noise ratio ( SNR Ratio), QPSK system and BPSK system, and different fading channels, to identify the best possible channels and systems for spectrum sensing and improving the probability of detection. The study resulted that an averaging filter being better than an IIR filter. As the number of inputs and SNR increased, the probability of detection also improved. The Rayleigh fading channel has a better performance compared to the Rician and Nakagami fading channel.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies