899 resultados para Recycled Concrete Aggregate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a study on the behaviour of self-compacting concrete (SCC) in the fresh and hardened states, produced with binary and ternary mixes of fly ash (FA) and limestone filler (LF), using the method proposed by Nepomuceno. His method determines the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) easily and efficiently, whilst guaranteeing the SCC properties in both the fresh and hardened states. For this, 11 SCMs were studied: one with cement (C) only; three with FA at 30%, 60% and 70% C substitution; three with LF at 30%, 60% and 70% C substitution; four with FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% C substitution. Once the composition of these mortars was defined, 18 SCC mixes were produced: 14 binary SCC mixes were produced with the seven binary mortar mixes, and four ternary SCC mixes were produced with the four ternary mortar mixes. In addition to the methodology proposed by Nepomuceno, the combined use of FA and LF in ternary mixtures was tested. The results confirmed that the method could yield SCC with adequate properties in both the fresh and hardened states. It was also possible to determine the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) that will guarantee the SCC properties in both the fresh and hardened states, as confirmed through the optimized behaviour of the SCC in the fresh state and the promising results in the hardened state (compressive strength). The potential demonstrated by the joint use of LF and FA through the synergetic interaction of both additions is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure and Infrastructure Engineering, 1-17

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short Term Scienti c Mission, COST ACTION TU-0601

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a contribution to the definition and assessment of structural robustness. Special emphasis is given to reliability of reinforced concrete structures under corrosion of longitudinal reinforcement. On this communication several authors’ proposals in order to define and measure structural robustness are analyzed and discussed. The probabilistic based robustness index is defined, considering the reliability index decreasing for all possible damage levels. Damage is considered as the corrosion level of the longitudinal reinforcement in terms of rebar weight loss. Damage produces changes in both cross sectional area of rebar and bond strength. The proposed methodology is illustrated by means of an application example. In order to consider the impact of reinforcement corrosion on failure probability growth, an advanced methodology based on the strong discontinuities approach and an isotropic continuum damage model for concrete is adopted. The methodology consist on a two-step analysis: on the first step an analysis of the cross section is performed in order to capture phenomena such as expansion of the reinforcement due to the corrosion products accumulation and damage and cracking in the reinforcement surrounding concrete; on the second step a 2D deteriorated structural model is built with the results obtained on the first step of the analysis. The referred methodology combined with a Monte Carlo simulation is then used to compute the failure probability and the reliability index of the structure for different corrosion levels. Finally, structural robustness is assessed using the proposed probabilistic index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XII DBMC – 12th International Conference on Durability of Building Materials and Components, Vol.2, Porto, 2011, p.737-744

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings IGLC-19, July 2011, Lima, Perú

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International Seminar on Seismic Risk and Rehabilitation of Stone Masonry Housing, Azores, Portugal, 1998

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I construct a model in which money and bond holdings are consistent with individual decisions and aggregate variables such as production and interest rates. The agents are infinitely-lived, have constant-elasticity preferences, and receive a fraction of their income in money. Each agent solves a Baumol-Tobin money management problem. Markets are segmented because financial frictions make agents trade bonds for money at different times. Trading frequency, consumption, government decisions and prices are mutually consistent. An increase in inflation, for example, implies higher trading frequency, more bonds sold to account for seigniorage, and lower real balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic events are a major factor to consider in structural design of buildings in many countries. With the purpose of saving lives, most of the design codes lead to structural solutions that withstand large seismic actions without collapsing, but without taking into account a possible usage of the structures after the earthquake. As a result, it is necessary to consider the time needed to repair/retrofit the damaged structures (i.e. the downtime) since this period of inactivity may result in huge financial implications for the occupants of the buildings. In order to minimise the damages and simplify repair operations, structural solutions with rocking systems and negligible residual displacements have been developed during the last two decades. Systems with precast concrete rocking walls were studied with the aim of investigat- ing suitable and convenient structural alternatives to minimise the damage in case of an earthquake. Experimental, numerical and analytical analyses on post-tensioned solutions, with and without energy dissipation devices, were carried out in this research. The energy dissipation devices were made from steel angles that were further developed during the research. Different solutions for these devices were experimentally tested under cyclic loading and the results are presented. Numerical and analytical work on steel angles was also carried out. Regarding the concrete rocking wall systems, two concrete rocking wall systems were studied: post-tensioned walls and post-tensioned walls with energy dissipation devices. In the latter, the solution was to fix them externally to the wall, allowing their easy replacement after an earthquake. It is shown that the dissipaters are a viable solution for use in precast concrete rocking wall systems. A building case study is presented. The comparison between a traditional monolithic system and a hybrid solution was carried out, allowing the evaluation of the efficiency of the solution that was developed.