896 resultados para Recombinant Protein
Resumo:
O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic posttranslational modification composed of a single monosaccharide, GlcNAc, glycosidically composed of a single monosaccharide, GlcNAc, glycosidically linked to the side-chain hydroxyl of serine or threonine residues. Although O-GlcNAc occurs on a myriad of nuclear and cytoplasmic proteins, only a few have thus far been identified. These O-GlcNAc-bearing proteins are also modified by phosphorylation and form reversible multimeric complexes. Here we present evidence for O-GlcNAc glycosylation of the oncoprotein c-Myc, a helix-loop-helix/leucine zipper phosphoprotein that heterodimerizes with Max and participates in the regulation of gene transcription in normal and neoplastic cells. O-GlcNAc modification of c-Myc is shown by three different methods: (i) demonstration of lectin binding to in vitro translated protein using a protein-protein interaction mobility-shift assay; (ii) glycosidase or glycosyltransferase treatment of in vitro translated protein analyzed by lectin affinity chromatography; and (iii) direct characterization of the sugar moieties on purified recombinant protein overexpressed in either insect cells or Chinese hamster ovary cells. Analyses of serial deletion mutants of c-Myc further suggest that the O-GlcNAc site(s) are located within or near the N-terminal transcription activation/malignant transformation domain, a region where mutations of c-Myc that are frequently found in Burkitt and AIDS-related lymphomas cluster.
Resumo:
Treatment of small resting B cells with soluble F(ab')2 fragments of anti-IgM, an analogue of T-independent type 2 antigens, induced activation characterized by proliferation and the expression of surface CD5. In contrast, B cells induced to proliferate in response to thymus-dependent inductive signals provided by either fixed activated T-helper 2 cells or soluble CD40 ligand-CD8 (CD40L) recombinant protein displayed elevated levels of CD23 (Fc epsilon II receptor) and no surface CD5. Treatment with anti-IgM and CD40L induced higher levels of proliferation and generated a single population of B cells coexpressing minimal amounts of CD5 and only a slight elevation of CD23. Anti-IgM- but not CD40L-mediated activation was highly sensitive to inhibition by cyclosporin A and FK520. Sp-cAMPS, an analogue of cAMP, augmented CD40L and suppressed surface IgM-mediated activation. Taken together these results are interpreted to mean that there is a single population of small resting B cells that can respond to either T-independent type 2 (surface IgM)- or T-dependent (CD40)-mediated activation. In response to different intracellular signals these cells are induced to enter alternative differentiation pathways.
Resumo:
GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK1 and glnK2. The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK1 and GlnK2. Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This protein–protein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK1 and GlnK2 produced equivalent results.
Resumo:
Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 10(4) P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei At doses of 10(5) and 10(6) IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6-EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA.
Resumo:
The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.
Resumo:
Existing models describe the product release from baculovirus infected insect cells as an unspecific protein leakage occurring in parallel with protein production. The model presented here shows that the observed product release of normally non-secreted proteins can be described through cell death alone. This model avoids the implicit non-physiological assumption of previous models that cells permeable to recombinant protein as well as trypan blue continue to produce protein. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of the branched-chain amino acids. The reaction catalyzed consists of two stages, the first of which is an alkyl migration from one carbon atom to its neighbour. The likely transition state is therefore a cyclopropane derivative, and cyclopropane-1,1-dicarboxylate(CPD) has been reported to inhibit the Escherichia coli enzyme. In addition, this compound causes the accumulation of the substrate of ketol-acid reductoisomerase in plants. Here, we investigate the inhibition of the purified rice enzyme. The cDNA was cloned, and the recombinant protein was expressed in E. coli, purified and characterized kinetically. The purified enzyme is strongly inhibited by cyclopropane-1,1-dicarboxylate, with an inhibition constant of 90 nM. The inhibition is time-dependent and this is due to the low rate constants for formation (2.63 X 10(5) M-1 min(-1)) and dissociation (2.37 x 10(-2) min(-1)) of the enzyme-inhibitor complex. Other cyclopropane derivatives are much weaker inhibitors while dimethylmalonate is moderately effective. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Gateway technology is a powerful system for converting a single entry vector into a wide variety of expression vectors. We expressed recombinant influenza matrix protein M1 (FMP), a potent antigen for cytotoxic T cells, using the Gateway vector pET-DEST42 containing the FMP cDNA, and purified the expressed FMP as a single 32 kDa recombinant protein. N-terminal and internal protein sequencing, however, showed that the recombinant FMP contained an extra 10 amino acids fused to the N-terminal of native FMP. Further investigation of the DNA sequence adjacent to the 5'-FMP cDNA indicated that the TTG in the attB1 site (30bp upstream of the ATG in the 5'-FMP cDNA) behaved as a dominant translation start site, resulting in a 10 amino acid extension of the recombinant FMP. Thus, it is possible that recombinant proteins produced by this Gateway vector contain unexpected vector-derived peptides, which may affect experimental outcomes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Many recombinant proteins are often over-expressed in host cells, such as Escherichia coli, and are found as insoluble and inactive protein aggregates known as inclusion bodies (IBs). Recently, a novel process for IB extraction and solubilisation, based on chemical extraction, has been reported. While this method has the potential to radically intensify traditional IB processing, the process economics of the new technique have yet to be reported. This study focuses on the evaluation of process economics for several IB processing schemes based on chemical extraction and/or traditional techniques. Simulations and economic analysis were conducted at various processing conditions using granulocyte macrophage-colony stimulating factor, expressed as IBs in E. coli, as a model protein. In most cases, IB processing schemes based on chemical extraction having a shorter downstream cascade demonstrated a competitive economic edge over the conventional route, validating the new process as an economically more viable alternative for IB processing.
Resumo:
The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.
Resumo:
Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacteria] cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended.
Resumo:
Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.
Resumo:
The importance of S100A4, a Ca2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and a5ß1 integrin co-signalling pathways linked by activation of PKCa in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.
Resumo:
Antifoams are often added to bioprocesses with little knowledge of their impact on the cells or product. However, it is known that certain antifoams can affect the growth rates of both prokaryotic and eukaryotic organisms in addition to changing surface properties such as lipid content, resulting in changes to permeability. This in turn can be beneficial to a recombinant protein production system for soluble proteins, as has been demonstrated by increased secretion of a-amylase and GFP, or achievement of greater yields of protein due to increased biomass. However, in some cases, certain concentrations of antifoams appear to have a detrimental effect upon cells and protein production, and the effects vary depending upon the protein being expressed. These findings emphasise the importance of optimising and understanding antifoam addition to bioprocesses.