998 resultados para Receptors, Immunologic -- genetics -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After superantigen challenge a significant proportion of superantigen-reactive T cells remain undivided. We provide evidence that the lymphoid environment limits T cell proliferation in the secondary lymphoid organs when the frequency of superantigen reactive T cells is unusually high. We monitored T cell proliferation and the percentage of undivided cells when the frequency of superantigen-reactive T cells was low (1%), intermediate (15%) or high (30-100%) by transferring fluorescently labeled cells into different recipients. When the frequency was low, practically all the reactive T cells entered cell cycle and proliferated maximally. At intermediate frequencies a large proportion of reactive T cells did not enter cell cycle and the whole population divided less. A further increase in reactive T cells did not alter the percentage of undivided cells but induced a further decrease in the number of cell divisions. Interestingly, the observations made with superantigens were confirmed with peptide antigen and TCR-transgenic mice. Moreover, in vivo and in vitro data suggest that dendritic cells are the most likely candidates in limiting T cell proliferation in the lymphoid environment. In conclusion, we show that the availability of APC in the lymphoid environment can quantitatively limit T cell priming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectin-like receptor NKG2D. To redirect NK cells against tumor cells, we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the 'knob into hole' heterodimerization strategy, in which 'knob' and 'hole' variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TNF family member BAFF is a fundamental survival factor for B cells. BAFF binds to three receptors, only one of which, BAFF-R, does not cross-react with the BAFF-related ligand APRIL. The survival function of BAFF on B cells is mediated mainly by BAFF-R and is particularly effective in transitional B cells. BAFF depletion leads to a considerable decrease in mature B cells, without apparent effect on B cell genesis. Consistently, BAFF overexpression results in an expanded B cell compartment and autoimmunity in mice. Elevated amounts of BAFF can be found in the serum of patients suffering from autoimmune diseases. The BAFF system is a promising target for the treatment of autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of protein-protein interactions and their role in diverse pathophysiological processes is a promising approach to the identification of molecules of therapeutic potential. This paper describes the identification of peptidic CCR5 receptor ligands as potential drug leads against HIV-1 infection using in vitro evolution based on phage display. A phage-displayed peptide library was used to select for anti-CCR5 peptide. Further in vitro evolution of the peptide by exon shuffling was performed to identify peptides with optimized characteristics for CCR5 receptor. This peptide inhibited HIV coreceptor activity in a cell fusion assay with an IC50 of 5 microM. It did not exhibit either agonistic or antagonistic activity on CCR5 in the concentration range used. To our knowledge, this is a first report that describes the identification of peptide ligands specific to the CCR5 receptor from a phage-displayed library and the maturation of the selected peptide sequence by gene shuffling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type-1 (T1R) and Type-2 (T2R) leprosy reactions (LR), which affect up to 50% of leprosy patients, are aggressive inflammatory episodes of sudden onset and highly variable incidence across populations. LR are often diagnosed concurrently with leprosy, but more frequently occur several months after treatment onset. It is not uncommon for leprosy patients to develop recurring reactional episodes; however, they rarely undergo both types of LR. Today, LR are the main cause of permanent disabilities associated with leprosy and represent a major challenge in the clinical management of leprosy patients. Although progress has been made in understanding the immunopathology of LR, the factors that cause a leprosy patient to suffer from LR are largely unknown. Given the impact that ethnic background has on the risk of developing LR, host genetic factors have long been suspected of contributing to LR. Indeed, polymorphisms in seven genes [Toll-like receptors (TLR)1, TLR2, nucleotide-binding oligomerisation domain containing 2, vitamin D receptor, natural resistance-associated macrophage protein 1, C4B and interleukin-6] have been found to be associated with one or more LR outcomes. The identification of host genetic markers with predictive value for LR would have a major impact on nerve damage control in leprosy. In this review, we present the recent advances achieved through genetic studies of LR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a current perspective of individualized medicine, biomarkers appear as a simple and readily available aid to assist clinicians in the identification and monitoring of diseases whose diagnosis is difficult. Basically, we know the limited performance of medical history and of clinical examination; therefore, the use of laboratory tests is often seen as the panacea to solve the clinical enigma. The purpose of this article is to analyze a few biomarkers commonly processed in the immunology laboratory (AAN, ANCA, anti-tTG, rheumatoid factor and anti-CCP) and to review the principle, the usefulness and the performance of these tests in specific clinical situations. We will see that, far from supplanting history and physical examination, these immunological biomarkers take their full value as a supplement to clinical information!

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors of the NF-kappaB/Rel family are important mediators of extracellular signals. Their implication in positive selection of thymocytes is suggested by a defective thymic development in transgenic mice that over-express IkappaB in thymocytes. These mice exhibit an accumulation of an unusually prominent population of TCRhigh/CD4/CD8 double positive cells in the thymus and a dramatic reduction of CD4+ and CD8+ cells in the periphery. The present study addresses the role of NF-kappaB in survival and differentiation processes of maturing thymocytes using IkappaB/bcl-2 and IkappaB/HY double-transgenic mice. Neither the introduction of the anti-apoptosis gene bcl-2 nor the positively selecting background in female HY transgenic mice resulted in a rescue of the maturational defects observed in the thymus of IkappaB transgenic mice. Thus, rather than promoting survival the main role of NF-kappaB/Rel proteins during positive selection of thymocytes appears to be the mediation of differentiation signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.