974 resultados para Recent Tectonic Evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome sequence varies in numerous ways among individuals although the gross architecture is fixed for all humans. Retrotransposons create one of the most abundant structural variants in the human genome and are divided in many families, with certain members in some families, e.g., L1, Alu, SVA, and HERV-K, remaining active for transposition. Along with other types of genomic variants, retrotransponson-derived variants contribute to the whole spectrum of genome variants in humans. With the advancement of sequencing techniques, many human genomes are being sequenced at the individual level, fueling the comparative research on these variants among individuals. In this thesis, the evolution and functional impact of structural variations is examined primarily focusing on retrotransposons in the context of human evolution. The thesis comprises of three different studies on the topics that are presented in three data chapters. First, the recent evolution of all human specific AluYb members, representing the second most active subfamily of Alus, was tracked to identify their source/master copy using a novel approach. All human-specific AluYb elements from the reference genome were extracted, aligned with one another to construct clusters of similar copies and each cluster was analyzed to generate the evolutionary relationship between the members of the cluster. The approach resulted in identification of one major driver copy of all human specific Yb8 and the source copy of the Yb9 lineage. Three new subfamilies within the AluYb family – Yb8a1, Yb10 and Yb11 were also identified, with Yb11 being the youngest and most polymorphic. Second, an attempt to construct a relation between transposable elements (TEs) and tandem repeats (TRs) was made at a genome-wide scale for the first time. Upon sequence comparison, positional cross-checking and other relevant analyses, it was observed that over 20% of all TRs are derived from TEs. This result established the first connection between these two types of repetitive elements, and extends our appreciation for the impact of TEs on genomes. Furthermore, only 6% of these TE-derived TRs follow the already postulated initiation and expansion mechanisms, suggesting that the others are likely to follow a yet-unidentified mechanism. Third, by taking a combination of multiple computational approaches involving all types of genetic variations published so far including transposable elements, the first whole genome sequence of the most recent common ancestor of all modern human populations that diverged into different populations around 125,000-100,000 years ago was constructed. The study shows that the current reference genome sequence is 8.89 million base pairs larger than our common ancestor’s genome, contributed by a whole spectrum of genetic mechanisms. The use of this ancestral reference genome to facilitate the analysis of personal genomes was demonstrated using an example genome and more insightful recent evolutionary analyses involving the Neanderthal genome. The three data chapters presented in this thesis conclude that the tandem repeats and transposable elements are not two entirely distinctly isolated elements as over 20% TRs are actually derived from TEs. Certain subfamilies of TEs themselves are still evolving with the generation of newer subfamilies. The evolutionary analyses of all TEs along with other genomic variants helped to construct the genome sequence of the most recent common ancestor to all modern human populations which provides a better alternative to human reference genome and can be a useful resource for the study of personal genomics, population genetics, human and primate evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bien que les champignons soient régulièrement utilisés comme modèle d'étude des systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina (levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre question concerne la position phylogénétique des nucléariides, un groupe d'eucaryotes amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de taxons et l'utilisation de six gènes nucléaires seulement. Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests statistiques appliqués à des assemblages de données phylogénomiques nucléaires et mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires important (plus de cent protéines) et avec supports statistiques concluants, que le genre Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le regroupement conflictuel des Schizosaccharomyces avec les Saccharomycotina, venant des données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: l'attraction des longues branches (ALB), un artéfact menant au regroupement d'espèces dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données nucléaires, nous démontrons avec support statistique significatif que les nucleariides constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support statistique significatif, bien que ne pouvant placer tous les membres du groupe avec confiance. Nos résultats remettent en cause des aspects d'une récente reclassification taxonomique des zygomycètes et de leurs voisins, les chytridiomycètes. Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - sites HH); ces sites sont connus comme contribuant significativement au phénomène d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. Néanmoins, et de façon générale, la manipulation de données préalable à l'analyse est loin d’être idéale. Les développements futurs devront viser l'intégration de l'identification et la pondération des sites HH au processus d'inférence phylogénétique lui-même.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an attempt to understand the important factors that control the occurrence, development and hydrochemical evolution of groundwater resources in sedimentary multi aquifer systems. The primary objective of this work is an integrated study of the hydrogeology and hydrochemistry with a view to elucidate the hydrochemical evolution of groundwater resources in the aquifer systems. The study is taken up in a typical coastal sedimentary aquifer system evolved under fluvio-marine environment in the coastal area of Kerala, known as the Kuttanad. The present study has been carried out to understand the aquifer systems, their inter relationships and evolution in the Kuttanad area of Kerala. The multi aquifer systems in the Kuttanad basin were formed from the sediments deposited under fluvio-marine and fluvial depositional environments and the marine transgressions and regressions in the geological past and palaeo climatic conditions influenced the hydrochemical environment in these aquifers. The evolution of groundwater and the hydrochemical processes involved in the formation of the present day water quality are elucidated from hydrochemical studies and the information derived from the aquifer geometry and hydraulic properties. Kuttanad area comprises of three types of aquifer systems namely phreatic aquifer underlain by Recent confined aquifer followed by Tertiary confined aquifers. These systems were formed by the deposition of sediments under fluvio-marine and fluvial environment. The study of the hydrochemical and hydraulic properties of the three aquifer systems proved that these three systems are separate entities. The phreatic aquifers in the area have low hydraulic gradients and high rejected recharge. The Recent confined aquifer has very poor hydraulic characteristics and recharge to this aquifer is very low. The Tertiary aquifer system is the most potential fresh water aquifer system in the area and the groundwater flow in the aquifer is converging towards the central part of the study area (Alleppey town) due to large scale pumping of water for water supply from this aquifer system. Mixing of waters and anthropogenic interferences are the dominant processes modifying the hydrochemistry in phreatic aquifers. Whereas, leaching of salts and cation exchange are the dominant processes modifying the hydrochemistry of groundwater in the confined aquifer system of Recent alluvium. Two significant chemical reactions modifying the hydrochemistry in the Recent aquifers are oxidation of iron in ferruginous clays which contributes hydrogen ions and the decomposition of organic matter in the aquifer system which consumes hydrogen ions. The hydrochemical environment is entirely different in the Tertiary aquifers as the groundwater in this aquifer system are palaeo waters evolved during various marine transgressions and regressions and these waters are being modified by processes of leaching of salts, cation exchange and chemical reactions under strong reducing environment. It is proved that the salinity observed in the groundwaters of Tertiary aquifers are not due to seawater mixing or intrusion, but due to dissolution of salts from the clay formations and ion exchange processes. Fluoride contamination in this aquifer system lacks a regional pattern and is more or less site specific in natureThe lowering of piezometric heads in the Tertiary aquifer system has developed as consequence of large scale pumping over a long period. Hence, puping from this aquifer system is to be regulated as a groundwater management strategy. Pumping from the Tertiary aquifers with high capacity pumps leads to well failures and mixing of saline water from the brackish zones. Such mixing zones are noticed from the hydrochemical studies. This is the major aquifer contamination in the Tertiary aquifer system which requires immediate attention. Usage of pumps above 10 HP capacities in wells taping Tertiary aquifers should be discouraged for sustainable development of these aquifers. The recharge areas need to be identified precisely for recharging the aquifer systems throughartificial means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects' orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A longstanding debate in evolutionary biology concerns whether species diverge gradually through time or by rapid punctuational bursts at the time of speciation. The theory of punctuated equilibrium states that evolutionary change is characterised by short periods of rapid evolution followed by longer periods of stasis in which no change occurs. Despite years of work seeking evidence for punctuational change in the fossil record, the theory remains contentious. Further there is little consensus as to the size of the contribution of punctuational changes to overall evolutionary divergence. Here we review recent developments which show that punctuational evolution is common and widespread in gene sequence data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes) first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximate to100 million years more ancient than the Cambrian boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Influenza A H3N2 viruses isolated recently have characteristic receptor binding properties that may decrease susceptibility to neuraminidase inhibitor drugs. A panel of clinical isolates and recombinant viruses generated by reverse genetics were characterized and tested for susceptibility to zanamivir. Methods: Plaque reduction assays and neuraminidase enzyme inhibition assays were used to assess susceptibility to zanamivir. Receptor binding properties of the viruses were characterized by differential agglutination of red blood cells (RBCs) from different species. Sequence analysis of the haemagglutinin (HA) and neuraminidase (NA) genes was carried out. Results: Characterization of a panel of H3N2 clinical isolates from 1968 to 2000 showed a gradual decrease in agglutination of chicken and guinea pig RBCs over time, although all isolates could agglutinate turkey RBCs equally. Sequence analysis of the HA and NA genes identified mutations in conserved residues of the HA1 receptor binding site, in particular Leu-226 --> Ile-226/Val-226, and modification of potential glycosylation site motifs. This may be indicative of changes in virus binding to sialic acid (SA) receptors in recent years. Although recent isolates had reduced susceptibility to zanamivir in MDCK cell based plaque reduction assays, no difference was found in an NA enzyme-inhibition assay. Assays with recombinant isogenic viruses showed that the recent HA, but not the NA, conferred reduced susceptibility to zanamivir. Conclusion: This study demonstrates that recent clinical isolates of influenza A H3N2 virus no longer agglutinate chicken RBCs, but despite significant receptor binding changes as a result of changes in HA, there was little variation in sensitivity of the NA to zanamivir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immense social and economic impact of bacterial pathogens, from drug-resistant infections in hospitals to the devastation of agricultural resources, has resulted in major investment to understand the causes and conse- quences of pathogen evolution. Recent genome se- quencing projects have provided insight into the evolution of bacterial genome structures; revealing the impact of mobile DNA on genome restructuring and pathogenicity. Sequencing of multiple genomes of relat- ed strains has enabled the delineation of pathogen evo- lution and facilitated the tracking of bacterial pathogens globally. Other recent theoretical and empirical studies have shown that pathogen evolution is significantly influenced by ecological factors, such as the distribution of hosts within the environment and the effects of co- infection. We suggest that the time is ripe for experi- mentalists to use genomics in conjunction with evolu- tionary ecology experiments to further understanding of how bacterial pathogens evolve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has shown that the evolution of Drosophila melanogaster resistance to attack by the parasitoid Asobara tabida is constrained by a trade-off with larval competitive ability. However, there are two very important questions that need to be answered. First, is this a general cost, or is it parasitoid specific? Second, does a selected increase in immune response against one parasitoid species result in a correlated change in resistance to other parasitoid species? The answers to both questions will influence the coevolutionary dynamics of these species, and also may have a previously unconsidered, yet important, influence on community structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution.