975 resultados para Rate-limiting steps
Resumo:
Case fatality rate is considered a main determinant of stroke mortality trends. We applied the World Health Organization's Stroke STEPS to identify case fatality rates in a community hospital in Brazil. We evaluated all patients with first-ever stroke seeking acute care at the hospital's emergency ward between April 2006 and December 2008 to verify early and late case fatality according to stroke subtype. We used years of formal education as a surrogate for socioeconomic status. Of 430 first-ever stroke events, 365 (84.9%) were ischemic and 65 (15.1%) were intracerebral hemorrhage. After 1 year, we adjudicated 108 deaths (86 ischemic; 22 hemorrhagic). Age-adjusted case fatality rates for ischemic stroke and intracerebral hemorrhage were 6.0% v 19.8% at 10 days, 10.6% v 22.1% at 28 days, 17.6% v 29.1% at 6 months, and 21.0% v 31.5% at 1 year. Illiteracy or no formal education was a predictor of death at 6 months (odds ratio [OR], 4.31; 95% confidence interval [CI] 1.34-13.91) and 1 year (OR, 4.21; 95% CI, 1.45-12.28) in patients with ischemic stroke, as well as at 6 months (OR, 3.19; 95% CI, 1.17-8.70) and 1 year (OR, 3.30; 95% CI, 1.30-8.45) for all stroke patients. Other variables, including previous cardiovascular risk factors and acute medical care, did not change this association to a statistically significant degree. In conclusion, case fatality, particularly up to 6 months, was higher in hemorrhagic stroke, and lack of formal education was associated with increased stroke mortality.
Resumo:
The present star formation rate (SFR) in the inner Galaxy is puzzling for the chemical evolution models (CEM). No static CEM is able to reproduce the peak of the SFR in the 4 kpc ring. The main reason is probably a shortage of gas, which could be due to the dynamical effects produced by the galactic bar, not considered by these models. We developed a CEM that includes radial gas flows in order to mimic the effects of the galactic bar in the first 5 kpc of the galactic disk. In this model, the star formation (SF) is a two-step process: first, the diffuse gas forms molecular clouds. Then, stars form from cloud-cloud collisions or by the interaction between massive stars and the molecular gas. The former is called spontaneous and the latter induced SF. The mass in the different phases of each region changes by the processes associated with the stellar formation and death by: the SF due to spontaneous fragmentation of gas in the halo; formation of gas clouds in the disk from the diffuse gas; induced SF in the disk due to the interaction between massive stars and gas clouds; and finally, the restitution of the diffuse gas associated to these process of cloud and star formation. In the halo, the star formation rate for the diffuse gas follows a Schmidt law with a power n = 1.5. In the disk, the stars form in two steps: first, molecular clouds are formed from the diffuse gas also following a Schmidt law with n=1.5 and a proportionality factor. Including a specific pattern of radial gas flows, the CEM is able to reproduce with success the peak in the SFR at 4 kpc (fig. 1).
Resumo:
BACKGROUND: Exercise capacity after heart transplantation (HTx) remains limited despite normal left ventricular systolic function of the allograft. Various clinical and haemodynamic parameters are predictive of exercise capacity following HTx. However, the predictive significance of chronotropic competence has not been demonstrated unequivocally despite its immediate relevance for cardiac output. AIMS: This study assesses the predictive value of various clinical and haemodynamic parameters for exercise capacity in HTx recipients with complete chronotropic competence evolving within the first 6 postoperative months. METHODS: 51 patients were enrolled in this exercise study. Patients were included when at least >6 months after HTx and without negative chronotropic medication or factors limiting exercise capacity such as significant transplant vasculopathy or allograft rejection. Clinical parameters were obtained by chart review, haemodynamic parameters from current cardiac catheterisation, and exercise capacity was assessed by treadmill stress testing. A stepwise multiple regression model analysed the proportion of the variance explained by the predictive parameters. RESULTS: The mean age of these 51 HTx recipients was 55.4 +/- 13.2 yrs on inclusion, 42 pts were male and the mean time interval after cardiac transplantation was 5.1 +/- 2.8 yrs. Five independent predictors explained 47.5% of the variance observed for peak exercise capacity (adjusted R2 = 0.475). In detail, heart rate response explained 31.6%, male gender 5.2%, age 4.1%, pulmonary vascular resistance 3.7%, and body-mass index 2.9%. CONCLUSION: Heart rate response is one of the most important predictors of exercise capacity in HTx recipients with complete chronotropic competence and without relevant transplant vasculopathy or acute allograft rejection.
Resumo:
The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.
Resumo:
In the strongly seasonal, but annually very wet, parts of the tropics, low-water availability in the short dry season leads to a semi-deciduous forest, one which is also highly susceptible to nutrient loss from leaching in the long wet season. Patterns in litterfall were compared between forest with low (LEM) and high (HEM) abundances of ectomycorrhizal trees in Korup National Park, Cameroon, over 26 months in 1990–92. Leaf litter was sorted into 26 abundant species which included six ectomycorrhizal species, and of these three were the large grove-forming trees Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia moreliana. Larger-tree species shed their leaves with pronounced peaks in the dry season, whereas other species had either weaker dependence, showed several peaks per year, or were wet-season shedders. Although total annual litterfall differed little between forest types, in the HEM forest (dominated by M. bisulcata) the dry-season peak was more pronounced and earlier than that in the LEMforest. Species differed greatly in their mean leaf litterfall nutrient concentrations, with an approx. twofold range for nitrogen and phosphorus, and 2.5–3.5-fold for potassium, magnesium and calcium. In the dry season, LEM and HEM litter showed similar declines in P and N concentration, and increases in K and Mg; some species, especially M. bisculcata, showed strong dry-wet season differences. The concentration of P (but not N) was higher in the leaf litter of ectomycorrhizal than nonectomycorrhizal species. Retranslocation of N and P was lower among the ectomycorrhizal than nonectomycorrhizal species by approx. twofold. It is suggested that, within ectomycorrhizal groves on this soil low in P, a fast decomposition rate with minimal loss of mineralized P is possible due to the relatively high litter P not limiting the cycle at this stage, combined with an efficient recapture of released P by the surface organic layer of ectomycorrhizas and fine roots. This points to a feedback between two essential controlling steps (retranslocation and mineralization) in a tropical rain forest ecosystem dominated by ectomycorrhizal trees.
Resumo:
Upwelling along the western coast of Africa south of the equator may be partitioned into three major areas, each having its own dynamics and history: (1) the eastern equatorial region, comprising the Congo Fan and the area of Mid-Angola; (2) the Namibia upwelling system, extending from the Walvis Ridge to Lüderitz; and (3) the Cape Province region, where upwelling is subdued. The highest nutrient contents in thermocline waters are in the northern region, the lowest in the southern one. Wind effects are at a maximum near the southern end of the Namibia upwelling system, and maximum productivity occurs near Walvis Bay, where the product between upwelling rate and nutrient content of upwelled waters is at a maximum. In the Congo/Angola region, opal tends to follow organic carbon quite closely in the Quaternary record. However, organic carbon has a strong precessional component, while opal does not. Despite relatively low opal content, sediments off Angola show the same patterns as those off the Congo; thus, they are part of the same regime. The spectrum shows nonlinear interference patterns between high- and low-latitude forcing, presumably tied to thermocline fertility and wind. On Walvis Ridge, as in the Congo-Angola region, the organic matter record behaves normally; that is, supply is high during glacial periods. In contrast, interglacial periods are favorable for opal deposition. The pattern suggests reduction in silicate content of the thermocline during glacial periods. The reversed phase (opal abundant during interglacials) persists during the entire Pleistocene and can be demonstrated deep into the Pliocene, not just on Walvis Ridge but all the way to the Oranje River and off the Cape Province. From comparison with other regions, it appears that silicate is diminished in the global thermocline, on average, whenever winds become strong enough to substantially shorten the residence time of silicate in upper waters (Walvis Hypothesis, solving the Walvis Paradox of reversed phase in opal deposition). The central discovery during Leg 175 was the documentation of a late Pliocene opal maximum for the entire Namibia upwelling system (early Matuyama Diatom Maximum [MDM]). The maximum is centered on the period between the end of the Gauss Chron and the beginning of the Olduvai Chron. A rather sharp increase in both organic matter deposition and opal deposition occurs near 3 Ma in the middle of the Gauss Chron, in association with a series of major cooling steps. As concerns organic matter, high production persists at least to 1 Ma, when there are large changes in variability, heralding subsequent pulsed production periods. From 3 to 2 Ma, organic matter and opal deposition run more or less parallel, but after 2 Ma opal goes out of phase with organic matter. Apparently, this is the point when silicate becomes limiting to opal production. Thus, the MDM conundrum is solved by linking planetary cooling to increased mixing and upwelling (ramping up to the MDM) and a general removal of silicate from the upper ocean through excess precipitation over global supply (ramping down from the MDM). The hypothesis concerning the origin of the Namibia opal acme or MDM is fundamentally the same as the Walvis Hypothesis, stating that glacial conditions result in removal of silicate from the thermocline (and quite likely from the ocean as a whole, given enough time). The Namibia opal acme, and other opal maxima in the latest Neogene in other regions of the ocean, marks the interval when a cooling ocean selectively removes the abundant silicate inherited from a warm ocean. When the excess silicate is removed, the process ceases. According to the data gathered during Leg 175, major upwelling started in the late part of the late Miocene. Presumably, this process contributed to the drawing down of carbon dioxide from the atmosphere, helping to prepare the way for Northern Hemisphere glaciation.
Resumo:
Site 1123 is located on the northeastern flank of the Chatham Rise. Sedimentological and clay mineralogical analyses indicate a very fine grained carbonate-rich sediment. Smectite and illite are the main constituents of the clay mineral assemblage. High smectite values in the Eocene decrease in younger sediment sequences. Illite and chlorite concentrations increase in younger sediments with significant steps at 13.5, 9, and 6.4 Ma. The kaolinite content is near the detection limit and not significant. We observed only small fluctuations of the clay mineral composition, which indicates a uniform sedimentation process, probably driven by long-term processes. Good correspondence is shown between increasing illite and chlorite values and the tectonic uplift history of the Southern Alps.
Resumo:
Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.
Resumo:
The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.
Resumo:
Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
Resumo:
Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
Resumo:
In this paper we show that the effect of jitter due to driver and LED is the limiting factor in the baud rate in L-PPM formats for VLC systems.
Resumo:
This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators
Resumo:
There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.