972 resultados para Radial Capillary
Resumo:
The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.
Resumo:
Absorbance detection in capillary electrophoresis (CE), offers an excellent mass sensitivity, but poor concentration detection limits owing to very small injection volumes (normally I to 10 nL). This aspect can be a limiting factor in the applicability of CE/UV to detect species at trace levels, particularly pesticide residues. In the present work, the optical path length of an on-column detection cell was increased through a proper connection of the column (75 mu m i.d.) to a capillary detection cell of 180 mu m optical path length in order to improve detectability. It is shown that the cell with an extended optical path length results in a significant gain in terms of signal to noise ratio. The effect of the increase in the optical path length has been evaluated for six pesticides, namely, carbendazim, thiabendazole, imazalil, procymidone triadimefon, and prochloraz. The resulting optical enhancement of the detection cell provided detection limits of ca. 0.3 mu g/mL for the studied compounds, thus enabling the residue analysis by CE/UV.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
In this paper a non-isothermal two-phase model for oil-R134a refrigerant mixture flow is presented to predict the R134a leakage through the radial clearance of rolling piston compressors. The flow is divided in a liquid single-phase region and in a two-phase region, in which the homogeneous model is used to simulate the flow. The refrigerant leakage is determined using the mixture mass flow rate and the refrigerant mass fraction variation along the flow. The results are obtained for inlet pressures varying from 200 to 700 kPa, inlet temperatures ranging from 40 to 60 degrees C, and minimal clearances between 10 and 60 mu m. The results are firstly compared to existing isothermal model data, showing that there is a significant difference between the leakage flow rates predicted by isothermal and non-isothermal models. Finally, a useful general equation for compressor designers is proposed to calculate the refrigerant leakage for a large range of operation conditions. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blowflies utilize discrete and ephemeral breeding sites for larval nutrition. After the exhaustion of food, larvae begin dispersing in search of sites to pupate or additional food sources, a process referred as postfeeding larval dispersal. Some of the most important aspects of this process were investigated in the blowfly Chrysomya albiceps, employing a circular arena to allow radial dispersion of larvae from the center. The results showed a positive correlation between burial depth and distance, and a negative correlation between distance and pupal weight. These results can be used in forensic entomology for the postmortem interval estimation of human corpses in medico-criminal investigations. (c) 2004 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)