992 resultados para RAT NIGROSTRIATAL PATHWAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Elevated neutral lipid content and mRNA expression of class A scavenger receptor (SRA) have been found in the renal cortex of the bovine growth hormone (bGH) mouse model of progressive glomerulosclerosis (GS). We hypothesize that the increased expression of SRA precedes glomerular scarring in this model. Design: Real time RT-PCR and immunofluorescence were employed to measure SRA and collagen types I and IV in the bGH transgenic and control mice at 5 and 12 weeks (wk) of age to determine the chronology of change in SRA expression in relation to glomerular scarring. Alternative mechanisms for increasing glomerular lipid were assessed by measuring mRNA expression levels of low-density lipoprotein receptor (LDL-r), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), and ATP-binding cassette transporter A1 (ABCA1). In addition, the involvement of macrophages in early GS was assessed by CD68 mRNA expression in kidney cortex. Results: Both mRNA and protein levels of SRA were significantly increased in 5-wk bGH compared with control mice, whereas the expression of collagen I and IV was unaltered. Unchanged levels of LDL-r and HMGR mRNA indicate that neither regulated cholesterol uptake via LDL-r nor the cholesterol synthetic pathway played a role in the early lipid increase. The finding of increased ABCA1 expression was an indicator of excess intracellular lipid in the renal cortex of bGH mice at 5 wk. CD68 expression in bGH did not differ significantly from that of controls at 5 wk suggesting that cortical macrophage infiltration was not increased in bGH mice at this time point. Conclusion: An early increase in SRA mRNA and protein expression in the bGH kidney precedes glomerular scarring and is independent of macrophage influx. Published by Elsevier Ltd. on behalf of Growth Hormone Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemopreventive activities of the dietary isoprenoids beta-ionone (beta I) and geraniol (GOH) were evaluated during the promotion phase of hepatocarcinogenesis. Over 5 consecutive weeks, rats received daily 16 mg/100 g body weight (b.w.) of beta I (beta I group), 25 mg/100 g b.w. of GOH (GOH group), or only corn oil (CO group, controls). Compared to the CO group, the following was observed: only the beta I group showed a decrease in the mean number of visible hepatocyte nodules (P<.05); beta I and GOH groups had reduced mean number of persistent preneoplastic lesions (pPNLs) (P<.05), but no differences regarding number of remodeling PNL (rPNLs) were observed; only the beta I group exhibited smaller rPNL size and percentage of liver sections occupied by pPNLs (P<.05), whereas the GOH group displayed a smaller percentage of liver sections occupied by rPNLs (P<.05); a trend was observed in the beta I group, which showed reduced cell proliferation of pPNLs (P<.10), and the GOH group had increased apoptosis in pPNLs and rPNLs (P<.05); only the beta I group displayed reduced total plasma cholesterol concentrations (P<.05) and increased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase mRNA levels (P<.05): only the GOH group had lower hepatic membrane RhoA protein levels (P<.05); both the beta I- and GOH-treated groups had higher hepatic concentrations of beta I and GOH, respectively (P<.05). Given these data, beta I and GOH show promising chemopreventive effects during promotion of hepatocarcinogenesis by acting through distinct mechanism of actions: beta I may inhibit cell proliferation and modulate HMGCoA reductase, and GOH can induce apoptosis and inhibit RhoA activation. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) ranks in prevalence and mortality among top 10 cancers worldwide. Butyric acid (BA), a member of histone deacetylase inhibitors (HDACi) has been proposed as an anticareinogenic agent. However, its short half-life is a therapeutical limitation. This problem could be circumvented with tributyrin (TB), a proposed BA prodrug. To investigate TB effectiveness for chemoprevention, rats were treated with the compound during initial phases of ""resistant hepatocyte"" model of hepatocarcinogenesis, and cellular and molecular parameters were evaluated. TB inhibited (p < 0.05) development of hepatic preneoplastic lesions (PNL) including persistent ones considered HCC progression sites. TB increased (p < 0.05) PNL remodeling, a process whereby they tend to disappear. TB did not inhibit cell proliferation in PNL, but induced (p < 0.05) apoptosis in remodeling ones. Compared to controls, rats treated with TB presented increased (P < 0.05) hepatic levels of BA indicating its effectiveness as a prodrug. Molecular mechanisms of TB-induced hepatocarcinogenesis chemoprevention were investigated. TB increased (p < 0.05) hepatic nuclear histone H3K9 hyperacetylation specifically in PNL and p21 protein expression, which could be associated with inhibitory HDAC effects. Moreover, it reduced (p < 0.05) the frequency of persistent PNL with aberrant cytoplasmic p53 accumulation, an alteration associated with increased malignancy. Original data observed in our study support the effectiveness of TB as a prodrug of BA and as an HDACi in hepatocarcinogenesis chemoprevention. Besides histone acetylation and p21 restored expression, molecular mechanisms involved with TB anticarcinogenic actions could also be related to modulation of p53 pathways. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rosiglitazone (RSG), a thiazolidinedione antidiabetic drug, is metabolized by CYP450 enzymes into two main metabolites: N-desmethyl rosiglitazone (N-Dm-R) and rho-hydroxy rosiglitazone (rho-OH-R). In humans, CYP2C8 appears to have a major role in RSG metabolism. On the other hand, the in vitro metabolism of RSG in animals has not been described in literature yet. Based on these concerns, the kinetic metabolism study of RSG using rat liver microsomal fraction is described for the first time. Maximum velocity (V (max)) values of 87.29 and 51.09 nmol/min/mg protein were observed for N-Dm-R and rho-OH-R, respectively. Michaelis-Menten constant (K (m)) values were of 58.12 and 78.52 mu M for N-Dm-R and rho-OH-R, respectively. Therefore, these results demonstrated that this in vitro metabolism model presents the capacity of forming higher levels of N-Dm-R than of rho-OH-R, which also happens in humans. Three other metabolites were identified employing mass spectrometry detection under positive electrospray ionization: ortho-hydroxy-rosiglitazone (omicron-OH-R) and two isomers of N-desmethyl hydroxy-rosiglitazone. These metabolites have also been observed in humans. The results observed in this study indicate that rats could be a satisfactory model for RSG metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 +/- 0.004 g) in relation to control (E(max) = 0.18 +/- 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 +/- 0.009 g) in relation to control (E(max) = 0.38 +/- 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 +/- 0.004 g) and contraction (E(max) = 0.34 +/- 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 +/- 0.012 g) and contraction (E(max) = 0.42 +/- 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 +/- 0.004 g) or contraction (E(max) = 0.54 +/- 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 +/- 435 U) in relation to control (10 455 +/- 303 U). SC236 reduced the fluorescence in contralateral samples (8250 +/- 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2)(-) derived from COX-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.