953 resultados para Quasi-periodic
Resumo:
Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.
Resumo:
A dynamic 3D pore-scale network model is formulated for investigating the effect of interfacial tension and oil-water viscosity during chemical flooding. The model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, while the static model with conventional invasion percolation algorithm incorporates the capillary pressure only. From comparisons of simulation results from these models. it indicates that the static pore scale network model can be used successfully when the capillary number is low. With the capillary increases due to the enhancement of water viscosity or decrease of interfacial tension, only the quasi-static and dynamic model can give insight into the displacement mechanisms.
Resumo:
9 p.
Resumo:
We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.
Resumo:
Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.
Resumo:
Two-dimensional periodic nanostructures on ZnO crystal surface were fabricated by two-beam interference of 790 nm femtosecond laser. The long period is, as usually reported, determined by the interference pattern of two laser beams. Surprisingly, there is another short periodic nanostructures with periods of 220-270 nm embedding in the long periodic structures. We studied the periods, orientation, and the evolution of the short periodic nanostructures, and found them analogous to the self-organized nanostructures induced by single fs laser beam. (C) 2008 Optical Society of America.