938 resultados para Quasi-analytical algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telecommunications and network technology is now the driving force that ensures continued progress of world civilization. Design of new and expansion of existing network infrastructures requires improving the quality of service(QoS). Modeling probabilistic and time characteristics of telecommunication systems is an integral part of modern algorithms of administration of quality of service. At present, for the assessment of quality parameters except simulation models analytical models in the form of systems and queuing networks are widely used. Because of the limited mathematical tools of models of these classes the corresponding parameter estimation of parameters of quality of service are inadequate by definition. Especially concerning the models of telecommunication systems with packet transmission of multimedia real-time traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniques for maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables, and an approach for performing parallel addition of N input symbols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniquesfor maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables,and an approach for performing parallel addition of N input symbols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some practical aspects of Genetic algorithms’ implementation regarding to life cycle management of electrotechnical equipment are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the classical Bertrand model when consumers exhibit some strategic behavior in deciding from which seller they will buy. We use two related but different tools. Both consider a probabilistic learning (or evolutionary) mechanism, and in the two of them consumers' behavior in uences the competition between the sellers. The results obtained show that, in general, developing some sort of loyalty is a good strategy for the buyers as it works in their best interest. First, we consider a learning procedure described by a deterministic dynamic system and, using strong simplifying assumptions, we can produce a description of the process behavior. Second, we use nite automata to represent the strategies played by the agents and an adaptive process based on genetic algorithms to simulate the stochastic process of learning. By doing so we can relax some of the strong assumptions used in the rst approach and still obtain the same basic results. It is suggested that the limitations of the rst approach (analytical) provide a good motivation for the second approach (Agent-Based). Indeed, although both approaches address the same problem, the use of Agent-Based computational techniques allows us to relax hypothesis and overcome the limitations of the analytical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the profinite topology on discrete groups and in particular the property of cyclic subgroup separability. We investigate the class of quasi-potent, cyclic subgroup separable groups, producing many examples and showing how it behaves with respect to certain group constructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El treball de recerca que aquí es presenta és l’estudi dels tres primers "elementa" de la "Geometriae Speciosae Elementa" (Bolonya, 1659) de Pietro Mengoli (1625-1686), que fou possiblement el deixeble més original de Bonaventura Cavalieri (1598-1647). En aquesta obra Mengoli desenvolupa un nou mètode per calcular quadratures utilitzant una teoria numèrica anomenada de “quasi proporcions”. Mengoli fonamenta les quasi proporcions en la teoria de proporcions del llibre cinquè dels "Elements" d’Euclides, a la qual hi afegeix unes nocions originals: raó “quasi nul•la”, “quasi infinita” i “quasi un nombre”. Una exhaustiva anàlisi d’aquesta teoria demostra l’originalitat de l’obra de Mengoli tant pel que fa a la seva forma d’exposició com pel que fa al seu contingut.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.