977 resultados para Química inorgánica-Manuales de laboratorio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO2 capture by solid sorbents is a physisorption process in which the gas molecules are adsorbed in a different porosity range, depending on the temperature and pressure of the capture conditions. Accordingly, CO2 capture capacities can be enhanced if the sorbent has a proper porosity development and a suitable pore size distribution. Thus, the main objective of this work is to maximize the CO2 capture capacity at ambient temperature, elucidating which is the most suitable porosity that the adsorbent has to have as a function of the emission source conditions. In order to do so, different activated carbons have been selected and their CO2 capture capacities have been measured. The obtained results show that for low CO2 pressures (e.g., conditions similar to post-combustion processes) the sorbent should have the maximum possible volume of micropores smaller than 0.7 nm. However, the sorbent requires the maximum possible total micropore volume when the capture is performed at high pressures (e.g., conditions similar to oxy-combustion or pre-combustion processes). Finally, this study also analyzes the important influence that the sorbent density has on the CO2 capture capacity, since the adsorbent will be confined in a bed with a restricted volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd and bimetallic Ni50Pd50 nanoparticles protected by polyvinylpyrrolidone (PVP) have been synthesized by the reduction-by-solvent method and deposited on single wall carbon nanotubes (SWCNTs) to be tested as H2 sensors. The SWCNTs were deposited by drop casting from different suspensions. The Pd nanoparticles-based sensors show a very reproducible performance with good sensitivity and very low response times (few seconds) for different H2 concentrations, ranging from 0.2% to 5% vol. H2 in air at atmospheric pressure. The influence of the metal nanoparticle composition, the quality of SWCNTs suspension and the metal loading have been studied, observing that all these parameters play an important role in the H2 sensor performance. Evidence for water formation during the H2 detection on Pd nanoparticles has been found, and its repercussion on the behaviour of the assembled sensors is discussed. The sensor preparation procedure detailed in this work has proven to be simple and reproducible to prepare cost-effective and highly efficient H2 sensors that perform very well under real application conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four different catalysts (Pt/Al2O3, Ce0.8Zr0.2O2, PrO2−x and SrTiCuO3) have been investigated on a laboratory scale to evaluate their potential as diesel soot combustion catalysts under different experimental conditions, which simulate the situation found in a continuous regeneration technology trap (dual-bed configuration of catalyst and soot) or a catalyst-coated filter system (single-bed configuration, both catalyst and soot particles mixed under loose-contact mode). Under dual-bed configuration, the behavior of the catalysts towards soot combustion are very similar, despite the differences observed in the NO2 production profiles. However, under single-bed configuration, there are important differences in the soot combustion activities and in the NO2 slip profiles. The configurations chosen have an enormous impact on CO/(CO + CO2) ratios of combustion products as well. The most active catalyst under NOx + O2 is PrO2−x combining a high contribution of active oxygen-assisted soot combustion as well as high NO2 production activity along the catalytic bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new non-porous carbon material from granular olive stones has been prepared to be used as a reference material for the characterization of the pore structure of activated carbons. The high precision adsorption isotherms of nitrogen at 77.4 K and argon at 87.3 K on the newly developed sample have been measured, providing the standard data for a more accurate comparative analysis to characterize disordered porous carbons using comparative methods such as t- and αS-methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper complements a previous one [1] about toluene adsorption on a commercial spherical activated carbon and on samples obtained from it by CO2 or steam activation. The present paper deals with the activation of a commercial spherical carbon (SC) having low porosity and high bed density (0.85 g/cm3) using the same procedure. Our results show that SC can be well activated with CO2 or steam. The increase in the burn-off percentage leads to an increase in the gravimetric adsorption capacity (more intensively for CO2) and a decrease in bed density (more intensively for CO2). However, for similar porosity developments similar bed densities are achieved for CO2 and steam. Especial attention is paid to differences between both activating agents, comparing samples having similar or different activation rates, showing that CO2 generates more narrow porosity and penetrates more inside the spherical particles than steam. Steam activates more from the outside to the interior of the spheres and hence produces larger spheres size reductions. With both activation agents and with a suitable combination of porosity development and bed density, quite high volumetric adsorption values of toluene (up to 236 g toluene/L) can be obtained even using a low toluene concentration (200 ppmv).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite materials made of porous SiO2 matrices filled with single-walled carbon nanotubes (SWCNTs) were deposited on electrodes by an electroassisted deposition method. The synthesized materials were characterized by several techniques, showing that porous silica prevents the aggregation of SWCNT on the electrodes, as could be observed by transmission electron microscopy and Raman spectroscopy. Different redox probes were employed to test their electrochemical sensing properties. The silica layer allows the permeation of the redox probes to the electrode surface and improves the electrochemical reversibility indicating an electrocatalytic effect by the incorporation of dispersed SWCNT into the silica films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the preparation of flexible ruthenium oxide containing activated carbon cloth by electrodeposition. Different electrodeposition methods have been used, including chronoamperometry, chronopotentiometry and cyclic voltammetry. The electrochemical properties of the obtained materials have been measured. The results show that the potentiostatic method allows preparing composites with higher specific capacitance than the pristine activated carbon cloth. The capacitance values measured by cyclic voltammetry at 10 mV s−1 and 1 V of potential window were up to 160 and 180 F g−1. This means an improvement of 82% and 100% with respect to the capacitance of the pristine activated carbon cloth. This excellent capacitance enhancement is attributed to the small particle size (4–5 nm) and the three-dimensional nanoporous network of the ruthenium oxide film which allows reaching very high degree of oxide utilization without blocking the pore structure of the activated carbon cloth. In addition, the electrodes maintain the mechanical properties of the carbon cloth and can be useful for flexible devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zeolite templated carbon (ZTC) was electrochemically oxidized under various conditions, and its chemistry and structural evolution were compared to those produced by conventional chemical oxidation. In both oxidation methods, a general loss of the original structure regularity and high surface area was observed with increasing amount of oxidation. However, the electrochemical method showed much better controllability and enabled the generation of a large number of oxygen functional groups while retaining the original structure of the ZTC. Unlike chemical treatments, highly microporous carbons with an ordered 3-D structure, high surface area (ranging between 1900 and 3500 m2/g) and a large number of oxygen groups (O = 11,000–3300 μmol/g), have been prepared by the electrochemical method. Some insights into the electrooxidation mechanism of carbon materials are proposed from the obtained polarization curves, using ZTC as a model carbon material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced porous materials with tailored porosity (extremely high development of microporosity together with a narrow micropore size distribution (MPSD)) are required in energy and environmental related applications. Lignocellulosic biomass derived HTC carbons are good precursors for the synthesis of activated carbons (ACs) via KOH chemical activation. However, more research is needed in order to tailor the microporosity for those specific applications. In the present work, the influence of the precursor and HTC temperature on the porous properties of the resulting ACs is analyzed, remarking that, regardless of the precursor, highly microporous ACs could be generated. The HTC temperature was found to be an extremely influential parameter affecting the porosity development and the MPSD of the ACs. Tuning of the MPSD of the ACs was achieved by modification of the HTC temperature. Promising preliminary results in gas storage (i.e. CO2 capture and high pressure CH4 storage) were obtained with these materials, showing the effectiveness of this synthesis strategy in converting a low value lignocellulosic biomass into a functional carbon material with high performance in gas storage applications.