942 resultados para Pseudo second order
Resumo:
We present the extension of a methodology to solve moving boundary value problems from the second-order case to the case of the third-order linear evolution PDE qt + qxxx = 0. This extension is the crucial step needed to generalize this methodology to PDEs of arbitrary order. The methodology is based on the derivation of inversion formulae for a class of integral transforms that generalize the Fourier transform and on the analysis of the global relation associated with the PDE. The study of this relation and its inversion using the appropriate generalized transform are the main elements of the proof of our results.
Resumo:
This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
Resumo:
Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Resumo:
We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a numerical solution for the steady 2D Navier-Stokes equations using a fourth order compact-type method. The geometry of the problem is a constricted symmetric channel, where the boundary can be varied, via a parameter, from a smooth constriction to one possessing a very sharp but smooth corner allowing us to analyse the behaviour of the errors when the solution is smooth or near singular. The set of non-linear equations is solved by the Newton method. Results have been obtained for Reynolds number up to 500. Estimates of the errors incurred have shown that the results are accurate and better than those of the corresponding second order method. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=partial derivative F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification.
Resumo:
A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.
Resumo:
In this work we study a Hořava-like 5-dimensional model in the context of braneworld theory. The equations of motion of such model are obtained and, within the realm of warped geometry, we show that the model is consistent if and only if λ takes its relativistic value 1. Furthermore, we show that the elimination of problematic terms involving the warp factor second order derivatives are eliminated by imposing detailed balance condition in the bulk. Afterwards, Israel's junction conditions are computed, allowing the attainment of an effective Lagrangian in the visible brane. In particular, we show that the resultant effective Lagrangian in the brane corresponds to a (3 + 1)-dimensional Hořava-like model with an emergent positive cosmological constant but without detailed balance condition. Now, restoration of detailed balance condition, at this time imposed over the brane, plays an interesting role by fitting accordingly the sign of the arbitrary constant β, insuring a positive brane tension and a real energy for the graviton within its dispersion relation. Also, the brane consistency equations are obtained and, as a result, the model admits positive brane tensions in the compactification scheme if, and only if, β is negative and the detailed balance condition is imposed. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
As contribuições dos mecanismos de detecção de contraste ao potencial cortical provocado visual (VECP) têm sido investigadas com o estudo das funções de resposta ao contraste e de resposta à frequência espacial. Anteriormente, o uso de sequências-m para o controle da estimulação era restrito à estimulação eletrofisiológica multifocal que, em alguns aspectos, se diferencia substancialmente do VECP convencional. Estimulações únicas com contraste espacial controlado por sequências-m não foram extensivamente estudadas ou comparadas às respostas obtidas com as técnicas multifocais. O objetivo deste trabalho foi avaliar a influência da frequência espacial e do contraste de redes senoidais no VECP gerado por estimulação pseudoaleatória. Nove sujeitos normais foram estimulados por redes senoidais acromáticas controladas por uma sequência-m binária pseudoaleatória em 7 frequências espaciais (0,4 a 10 cpg) em 3 tamanhos diferentes (4º, 8º e 16º de ângulo visual). Em 8º, foram testados adicionalmente seis níveis de contraste (3,12% a 99%). O kernel de primeira ordem não forneceu respostas consistentes com sinais mensuráveis através das frequências espaciais e dos contrastes testados – o sinal foi muito pequeno ou ausente – enquanto o primeiro e o segundo slice do kernel de segunda ordem exibiram respostas bastante confiáveis para as faixas de estímulo testadas. As principais diferenças entre os resultados obtidos com o primeiro e o segundo slice do kernel de segunda ordem foram o perfil das funções de amplitude versus contraste e de amplitude versus frequência espacial. Os resultados indicaram que o primeiro slice do kernel de segunda ordem foi dominado pela via M, porém para algumas condições de estímulo, pôde ser percebida a contribuição da via P. Já o segundo slice do kernel de segunda ordem refletiu contribuição apenas da via P. O presente trabalho estende achados anteriores sobre a contribuição das vias visuais ao VECP gerado por estimulação pseudoaleatória para uma grande faixa de frequências espaciais.
Resumo:
A seletividade espacial para cor tem sido investigada usando métodos eletrofisiológicos invasivos e não invasivos, e métodos psicofísicos. Em eletrofisiologia cortical visual não invasiva este tópico foi investigado usando métodos convencionais de estimulação periódica e extração de respostas por promediação simples. Novos métodos de estimulação (apresentação pseudo-aleatória) e extração de respostas corticais não invasivas (correlação cruzada) foram desenvolvidos e ainda não foram usados para investigar a seletividade espacial de cor de respostas corticais. Este trabalho objetivou introduzir esse novo método de eletrofisiologia pseudoaleatória para estudar a seletividade espacial de cor. Foram avaliados 14 tricromatas e 16 discromatópsicos com acuidade visual normal ou corrigida. Os voluntários foram avaliados pelo anomaloscópio HMC e teste de figuras de Ishihara para caracterizar a visão de cores quanto à presença de tricromacia. Foram usadas redes senoidais, 8º de ângulo visual, vermelho-verde para 8 frequências espaciais entre 0,2 a 10 cpg. O estímulo foi temporalmente modulado por uma sequência-m binária em um modo de apresentação de padrão reverso. O sistema VERIS foi usado para extrair o primeiro e o segundo slice do kernel de segunda ordem (K2.1 e K2.2, respectivamente). Após a modelagem da resposta às frequências espaciais com função de diferença de gaussianas, extraiu-se a frequência espacial ótima e banda de frequências com amplitudes acima de ¾ da amplitude máxima da função para servirem como indicadores da seletividade espacial da função. Também foi estimada a acuidade visual cromática pelo ajuste de uma função linear aos dados de amplitude a partir da frequência espacial do pico de amplitude até a mais alta frequência espacial testada. Em tricromatas, foi encontrada respostas cromáticas no K2.1 e no K2.2 que apresentaram seletividade espacial diferentes. Os componentes negativos do K2.1 e do K2.2 apresentaram sintonia passa-banda e o componente positivo do K2.1 apresentou sintonia passa-baixa. A acuidade visual estimada de todos os componentes estudados foi próxima àquelas encontradas por Mullen (1985) e Kelly (1983). Diferentes componentes celulares podem estar contribuindo para a geração do VECP pseudoaleatório. Este novo método se candidata a ser uma importante ferramenta para a avaliação não invasiva da visão de cores em humanos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)