904 resultados para Pruning algorithms
Resumo:
[ES]La fibrilación ventricular (VF) es el primer ritmo registrado en el 40\,\% de las muertes súbitas por paro cardiorrespiratorio extrahospitalario (PCRE). El único tratamiento eficaz para la FV es la desfibrilación mediante una descarga eléctrica. Fuera del hospital, la descarga se administra mediante un desfibrilador externo automático (DEA), que previamente analiza el electrocardiograma (ECG) del paciente y comprueba si presenta un ritmo desfibrilable. La supervivencia en un caso de PCRE depende fundamentalmente de dos factores: la desfibrilación temprana y la resucitación cardiopulmonar (RCP) temprana, que prolonga la FV y por lo tanto la oportunidad de desfibrilación. Para un correcto análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que, debido a las compresiones torácicas, la RCP introduce artefactos en el ECG. Desafortunadamente, la interrupción de la RCP afecta negativamente al éxito en la desfibrilación. En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años. Los DEA, que originalmente se diseñaron para pacientes adultos, deben discriminar de forma precisa las arritmias pediátricas para que su uso en niños sea seguro. Varios DEAs se han adaptado para uso pediátrico, bien demostrando la precisión de los algoritmos para adultos con arritmias pediátricas, o bien mediante algoritmos específicos para arritmias pediátricas. Esta tesis presenta un nuevo algoritmo DEA diseñado conjuntamente para pacientes adultos y pediátricos. El algoritmo se ha probado exhaustivamente en bases de datos acordes a los requisitos de la American Heart Association (AHA), y en registros de resucitación con y sin artefacto RCP. El trabajo comenzó con una larga fase experimental en la que se recopilaron y clasificaron retrospectivamente un total de 1090 ritmos pediátricos. Además, se revisó una base de arritmias de adultos y se añadieron 928 nuevos ritmos de adultos. La base de datos final contiene 2782 registros, 1270 se usaron para diseñar el algoritmo y 1512 para validarlo. A continuación, se diseñó un nuevo algoritmo DEA compuesto de cuatro subalgoritmos. Estos subalgoritmos están basados en un conjunto de nuevos parámetros para la detección de arritmias, calculados en diversos dominios de la señal, como el tiempo, la frecuencia, la pendiente o la función de autocorrelación. El algoritmo cumple las exigencias de la AHA para la detección de ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos como en pediátricos. El trabajo concluyó con el análisis del comportamiento del algoritmo con episodios reales de resucitación. En los ritmos que no contenían artefacto RCP se cumplieron las exigencias de la AHA. Posteriormente, se estudió la precisión del algoritmo durante las compresiones torácicas, antes y después de filtrar el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo método desarrollado a lo largo de la tesis. Los ritmos desfibrilables se detectaron de forma precisa tras el filtrado, los no-desfibrilables sin embargo no.
Resumo:
373 p. : il., gráf., fot., tablas
Resumo:
222 p. : il.
Resumo:
This study developed a framework for the shape optimization of aerodynamics profiles using computational fluid dynamics (CFD) and genetic algorithms. Agenetic algorithm code and a commercial CFD code were integrated to develop a CFD shape optimization tool. The results obtained demonstrated the effectiveness of the developed tool. The shape optimization of airfoils was studied using different strategies to demonstrate the capacity of this tool with different GA parameter combinations.
Resumo:
This paper describes Mateda-2.0, a MATLAB package for estimation of distribution algorithms (EDAs). This package can be used to solve single and multi-objective discrete and continuous optimization problems using EDAs based on undirected and directed probabilistic graphical models. The implementation contains several methods commonly employed by EDAs. It is also conceived as an open package to allow users to incorporate different combinations of selection, learning, sampling, and local search procedures. Additionally, it includes methods to extract, process and visualize the structures learned by the probabilistic models. This way, it can unveil previously unknown information about the optimization problem domain. Mateda-2.0 also incorporates a module for creating and validating function models based on the probabilistic models learned by EDAs.
Resumo:
211 p. :il.