950 resultados para Protein Synthesis
Resumo:
Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.
Resumo:
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.
Resumo:
Background: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.Results: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38α deficient (p38α-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. Conclusions: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
Resumo:
ABSTRACT: BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Resumo:
1.1 AbstractThe treatment of memory disorders and cognitive deficits in various forms of mental retardation may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. Different forms of memory have distinct molecular requirements.Short-term memory (STM) is thought to be mediated by covalent modifications of existing synaptic molecules, such as phosphorylation or dephosphorylation of enzymes, receptors or ion channels. In contrast, long-term memoiy (LTM) is thought to be mediated by growth of new synapses and restructuring of existing synapses. There is extensive evidence that changes in gene expression and de novo protein synthesis are key processes for LTM formation. In this context, the transcription factor CREB (cAMP-response element-binding protein) was shown to be crucial. Activation of CREB requires phosphorylation of a serine residue (Ser-133), and the subsequent recruitment of a coactivator called CREB-binding protein (CBP). Moreover, we have recently shown that another coactivator called CREB Regulated Transcription Coactivator 1 (CRTC1) functions as a calcium- and cAMP-sensitive coincidence detector in neurons, and is involved in hippocampal long-term synaptic plasticity. Given the importance of cAMP and calcium signaling for plasticity-related gene expression in neurons and in astrocytes, we sought to determine the respective involvement of the CREB coactivators CBP and CRTC1 in CREB-mediated transcription.We developed various strategies to selectively interfere with these CREB coactivators in mouse primary neurons and in astrocytes in vitro. However, despite several pieces of evidence implicating CBP and/or CRTC1 in the regulation of neuronal plasticity genes, we could not clearly determine the respective requirement of these coactivators for the activation of these genes. Nevertheless, we showed that calcineurin activity, which is important for CRTC1 nuclear translocation, is necessary for the expression of some CREB-regulated plasticity genes. We associated this phenomena to physiopathological conditions observed in Down's syndrome. In addition, we demonstrated that in astrocytes, noradrenaline stimulates CREB-target gene expression through β-adrenergic receptor activation, intracellular cAMP pathway activation, and CRTC-induced CREB transactivation.Defining the respective role of CREB and its coactivators CBP and CRTC1 in neuronal and astrocytic cultures in vitro sets the stage for future in vivo studies and for the possible development of new therapeutic strategies to improve the treatment of memoiy and cognitive disorders.1.2 RésuméUne meilleure connaissance des mécanismes moléculaires et cellulaires responsables de la formation de la mémoire pourrait grandement améliorer le traitement des troubles de la mémoire ainsi que des déficits cognitifs observés dans différentes formes de pathologies psychiatriques telles que le retard mental. Les différentes formes de mémoire dépendent de processus moléculaires différents.La mémoire à court terme (STM) semble prendre forme suite à des modifications covalentes de molécules synaptiques préexistantes, telles que la phosphorylation ou la déphosphorylation d'enzymes, de récepteurs ou de canaux ioniques. En revanche, la mémoire à long terme (LTM) semble être due à la génération de nouvelles synapses et à la restructuration des synapses existantes. De nombreuses études ont permis de démontrer que les changements dans l'expression des gènes et la synthèse de protéine de novo sont des processus clés pour la formation de la LTM. Dans ce contexte, le facteur de transcription CREB (cAMP-response element-binding protein) s'est avéré être un élément crucial. L'activation de CREB nécessite la phosphorylation d'un résidu sérine (Ser-133), et le recrutement d'un coactivateur nommé CBP (CREB binding protein). En outre, nous avons récemment démontré qu'un autre coactivateur de CREB nommé CRTC1 (CREB Regulated Transcription Coactivator 1) agit comme un détecteur de coïncidence de l'AMP cyclique (AMPc) et du calcium dans les neurones et qu'il est impliqué dans la formation de la plasticité synaptique à long terme dans l'hippocampe. Etant donné l'importance des voies de l'AMPc et du calcium dans l'expression des gènes impliqués dans la plasticité cérébrale, nous voulions déterminer le rôle respectif des coactivateurs de CREB, CBP et CRTC1.Nous avons développé diverses stratégies pour interférer de façon sélective avec les coactivateurs de CREB dans les neurones et dans les astrocytes chez la souris in vitro. Nos résultats indiquent que CBP et CRTC1 sont tous deux impliqués dans la transcription dépendante de CREB induite par l'AMPc et le calcium dans les neurones. Cependant, malgré plusieurs évidences impliquant CBP et/ou CRTC1 dans l'expression de gènes de plasticité neuronale, nous n'avons pas pu déterminer clairement leur nécessité respective pour l'activation de ces gènes. Toutefois, nous avons montré que l'activité de la calcineurine, dont dépend la translocation nucléaire de CRTC1, est nécessaire à l'expression de certains de ces gènes. Nous avons pu associer ce phénomène à une condition physiopathologique observée dans le syndrome de Down. Nous avons également montré que dans les astrocytes, la noradrénaline stimule l'expression de gènes cibles de CREB par une activation des récepteurs β- adrénergiques, l'activation de la voie de l'AMPc et la transactivation de CREB par les CRTCs.Définir le rôle respectif de CREB et de ses coactivateurs CBP et CRTC1 dans les neurones et dans les astrocytes in vitro permettra d'acquérir les connaissances nécessaires à de futures études in vivo et, à plus long terme d'éventuellement développer des stratégies thérapeutiques pour améliorer les traitements des troubles cognitifs.
Resumo:
Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.
IRF6 is a mediator of the Notch pro-differentiation and tumour suppressive function in keratinocytes
Resumo:
I. Résumé large publicIRF6 est un médiateur de Notch dans la différenciation des kératinocytes et dans sa fonction de suppresseur de tumeursLa peau est l'organe le plus important du corps humain, elle représente chez l'adulte une surface d'environ 1,5 m2 et elle est composée de 2000 milliards de cellules. La peau est composée de plusieurs types cellulaires dont les kératinocvtes. Ces cellules, qui se trouvent dans la couche la plus externe de la peau (Pépiderme), nous protègent de la déshydratation et des agressions externes telles que les infections et rayons ultraviolets. Cette fonction de « barrière » est mise en place grâce à un processus appelé différenciation des kératinocvtes durant lequel les kératinocytes deviennent matures et finalement meurent pour former la couche cornée la plus externe difficilement pénétrable. L'homéostasie tissulaire est un mécanisme qui régule l'équilibre entre prolifération, différentiation et mort cellulaire. Une perturbation de cet équilibre peut mener à la formation d'une tumeur. Il existe différents types de tumeurs de la peau. Nous nous sommes intéressés aux «carcinomes spino-cellulaires» (SCC) qui se développent à partir des keratinocytes en différenciation. Notch est une molécule impliquée positivement dans la différenciation des kératinocytes et joue un rôle prépondérant dans la suppression des tumeurs kératinocytaires comme les SCC dans lesquelles Notch est faiblement exprimé. L'implication de Notch dans la différenciation et dans la carcinogenèse kératinocytaire n'est plus controversée, mais les mécanismes qui sont à la base de ces fonctions restent encore à élucider. IRfF6 est une protéine qui, d'après sa structure, a été classée parmi une famille de régulateurs de la défense de l'organisme (IRFs). Des études ultérieures ont montré qu'IRf 6 n'a pas de rôle dans la réponse immunitaire mais qu'il est plutôt impliqué dans le développement de l'épiderme. Dans ce travail, nous avons établi que, dans les kératinocytes, l'expression d'IPJF6 est contrôlé par Notch et que, comme pour ce dernier, elle est réduite dans les SCCs. De plus, nous avons observé qu'IRF6 régule les mêmes gènes que Notch, et qu'il est en effet un médiateur de la fonction de Notch dans la différenciation des kératinocytes. Parmi les gènes contrôlés par l'axe Notch-IRF6 il y en a trois qui sont sur-exprimés dans les SCCs et qui sont réprimés par cet axe. Il s'agit d'une part d'IRF3 et IRF7, deux autres membres de la famille IRF, et du récepteur EGFR (Epidermal growth factor receptor), un oncogène (un gène impliqué dans l'accélération de la formation de tumeurs). Dans leur ensemble, ces découvertes nous informent sur les mécanismes impliqués dans les fonctions pro-differentiatrice et tumeur suppressive de Notch. Plus encore, elles ouvrent des perspectives intéressantes quant au développement de nouvelles approches thérapeutiques dans le traitement des cancers.II. RésuméLa voie de signalisation de Notch joue un rôle très important dans la différenciation cellulaire et dans la carcinogenèse de nombreux tissus. Dans les kératinocytes, elle agit comme suppresseur de tumeurs, fonction altérée dans les cancers spino cellulaires SCC (tumeurs kératinocytaires) de part la perte d'expression de Notch.Bien que les fonctions pro-différenciatrice et tumeur-suppressive de la voie de signalisation de Notch soient aujourd'hui reconnues, les mécanismes sous-jacents restent à explorer.Dans ce travail, nous montrons qu'IRF6, un membre de la famille des régulateurs de la voie de l'interféron (IRF), ne possédant pas de rôles dans la réponse immunitaire mais essentiel dans le développement de l'épiderme, est d'autant plus exprimé que le kératinocytes sont différenciées alors que son expression est drastiquement diminuée dans les SCC. De façon intéressante, l'expression d'IRF6 durant la différenciation kératinocytaire est directement contrôlée par Notch.Dans les kératinocytes l'expression accrue d'IRP6 a les mêmes effets que 1'activation de la voie de Notch induisant les marqueurs de différentiation des couches supra-basales de l'épiderme et inhibant ceux de la couche basale impliqués dans la prolifération cellulaire. Cependant IRF6 n'est pas impliqué dans la régulation d'autres cibles de Notch, comme p21WAFI/CiP' et Hesl. Comme Notch, IRF6 contrôle négativement l'expression de EGFR et IRF3/7. De ce fait EGFR et IRF3 et IRF7 sont fortement exprimés dans les SCCs humaines où l'expression de Notch et IRF6 est fortement réduite.En conclusion, nous avons démontré qu'IRF6 est une cible directe de Notch/CSL dans les keratinocytes qui medie les effets "non-canonique" de cette voie de signalisation dans la différentiation et dans la suppression tumorale.III. SummaryThe Notch pathway is an important regulator of differentiation and carcinogenesis. In keratinocytes it acts as tumour suppressor and the Notch gene is markedly reduced in keratinocyte-derived squamous cell carcinoma (SCC). While the pro-differentiation and tumour suppressive functions of Notch signalling in keratinocytes are well established, the underlying mechanisms are still poorly understood, We report here that Interferon Regulatory Factor 6 (IRF6), an IRF family member with an essential role in epidermal development, is downmodulated in SCC and is induced in differentiating cells. We observed that the induction of IRF6 in differentiating keratinocytes is suppressed by Notch inhibition. IRF6 expression is also decreased in mice with keratinocyte-specific deletion of the Notch 1/2.Moreover we show that the expression of this gene is induced by Notch activation through a CSL-dependent mechanism even under conditions of protein synthesis inhibition, with endogenous Notch 1 binding to the IRF6 promoter.Increased IRJF6 expression is necessary for the impact of Notch activation on differentiation markers K1 and Involucrin, and proliferation markers integrins and p63, but not on other "canonical" Notch targets like p21WAF1/Cipl, Hes1 and Hey1. Like Notch 1, IRF6 down-modulates expression of epidermal growth factor receptor (EGFR) as well as two other IRF family members, IRF3 and 7, which we previously linked to positive control of p63 expression. Expression of IRF3, IRF7 and EGFR is enhanced in cutaneous squamous cell carcinomas, illustrating a strikingly opposite pattern compared to Notch and IRF6.Thus, IRF6 is a primary Notch target in keratinocytes, which mediates the effects of this pathway on differentiation and contributes to tumor suppression.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.
Resumo:
BACKGROUND AND OBJECTIVES: Anabolic steroids are synthetic derivatives of testosterone, modified to enhance its anabolic actions (promotion of protein synthesis and muscle growth). They have numerous side effects, and are on the International Olympic Committee's list of banned substances. Gas chromatography-mass spectrometry allows identification and characterisation of steroids and their metabolites in the urine but may not distinguish between pharmaceutical and natural testosterone. Indirect methods to detect doping include determination of the testosterone/epitestosterone glucuronide ratio with suitable cut-off values. Direct evidence may be obtained with a method based on the determination of the carbon isotope ratio of the urinary steroids. This paper aims to give an overview of the use of anabolic-androgenic steroids in sport and methods used in anti-doping laboratories for their detection in urine, with special emphasis on doping with testosterone. METHODS: Review of the recent literature of anabolic steroid testing, athletic use, and adverse effects of anabolic-androgenic steroids. RESULTS: Procedures used for detection of doping with endogenous steroids are outlined. The World Anti-Doping Agency provided a guide in August 2004 to ensure that laboratories can report, in a uniform way, the presence of abnormal profiles of urinary steroids resulting from the administration of testosterone or its precursors, androstenediol, androstenedione, dehydroepiandrosterone or a testosterone metabolite, dihydrotestosterone, or a masking agent, epitestosterone. CONCLUSIONS: Technology developed for detection of testosterone in urine samples appears suitable when the substance has been administered intramuscularly. Oral administration leads to rapid pharmacokinetics, so urine samples need to be collected in the initial hours after intake. Thus there is a need to find specific biomarkers in urine or plasma to enable detection of long term oral administration of testosterone.
Resumo:
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.