872 resultados para Production Engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gas production behavior from methane hydrate in porous sediment by injecting the brine with the salinity of 0−24 wt % and the temperature of −1 to 130 °C was investigated in a one-dimensional experimental apparatus. The results show that the gas production process consists of three periods: the free gas production, the hydrate dissociation, and the general gas reservoir production. The hydrate dissociation accompanies the temperature decrease with the injection of the brine (NaCl solution), and the dissociation duration is shortened with the increase of the salinity. With the injection of hot brine, instantaneous hydrate dissociation rate also increases with the increase of the salinity. However, while the NaCl concentration is beyond a certain value, the rate has no longer continued increasing. Thermal efficiency and energy ratio for the hydrate production can be enhanced by injecting hot brine, and the enhanced effectiveness is quite good with the injection of high salinity at lower temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an attractive method to make biodiesel from soybean soapstock (SS). A novel recovery technology of acid oil (AO) from SS has been developed with only sulfuric acid solution under the ambient temperature (25 +/- 2 degrees C). After drying, AO contained 50.0% FFA, 15.5% TAG 6.9% DAG 3.1% MAG 0.8% water and other inert materials. The recovery yield of AO was about 97% (w/w) based on the total fatty acids of the SS. The acid oil could be directly converted into biodiesel at 95 degrees C in a pressurized reactor within 5 hours. Optimal esterification conditions were determined to be a weight ratio of 1 : 1.5 : 0.1 of AO/methanol/sulfuric acid. Higher reaction temperature helps to shorten the reaction time and requires less catalyst and methanol. Ester content of the biodiesel derived from AO through one-step acid catalyzed reaction is around 92%. After distillation, the purity of the biodiesel produced from AO is 97.6% which meets the Biodiesel Specification of Korea. The yield of purified biodiesel was 94% (w/w) based on the total fatty acids of the soapstock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were carried out to optimize the conditions for the recovery of protein. The results showed that pH of 6.00 for wastewater, the dosage of 1% chitosan solution in 1% acetic acid aqueous solution of 2.0 ml for 50 ml wastewater and 1% FeCl3 aqueous solution of 2 ml for 50 ml wastewater, the flocculation time of 4.0 h were the optimal conditions for the recovery of protein. The obtained protein sediment contained abundant amino acids, especially isoleucine, methione and lysine that are absent in other protein resource. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lee M.H., Model-Based Reasoning: A Principled Approach for Software Engineering, Software - Concepts and Tools,19(4), pp179-189, 2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorghum is the fifth most important cereal worldwide and is a major source of agricultural residues in tropical regions. Bioconversion of whole sorghum crop residues comprising stalks, leaves, peduncles and panicles to ethanol has great potential for improving ethanol yield per sorghum crop cultivated, and for sustainable biofuel production. Effective pretreatment of sorghum lignocellulosic biomass is central to the efficiency of subsequent fermentation to ethanol. Previous studies have focused on bioconversion of sorghum stalks and/or leaves only to bioethanol, but the current study is the first report dealing with whole crop residues. We specifically focused on the impact of Nigerian sorghum cultivation location and cultivar type on the potential ethanol yield from whole sorghum crop residues. Efficient bioconversion of whole sorghum residues to ethanol provides a sustainable route for utilisation of crop residues thereby providing a non-food feedstock for industrial scale bioethanol production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogas production is the conversion of the organic material into methane (CH4) and carbon dioxide (CO2) under anaerobic conditions. Anaerobic digestion (AD) is widely used in continental and Scandinavian communities as both a waste treatment option and a source of renewable energy. Ireland however lags behind this European movement. Numerous feedstocks exist which could be digested and used to fuel a renewable transport fleet in Ireland. An issue exists with the variety of feedstocks; these need to be assessed and quantified to ascertain their potential resource and application to AD. From literature the ideal C:N ratio is between 25 and 30:1. Low levels of C:N (<15) can lead to problems with ammonia inhibition. Within the digester a plentiful supply of nutrients and a balanced C:N is required for stable performance. Feedstocks were sampled from a range of over 100 different substrates in Ireland including for first, second and third generation feedstocks. The C:N ranged from 81:1 (Winter Oats) to 7:1 (Silage Effluent). The BMP yields were recorded ranging from 38 ± 2.0 L CH4 kg−1 VS for pig slurry (weaning pigs) to 805 ± 57 L CH4 kg−1 VS for used cooking oil (UCO). However the selection of the best preforming feedstock in terms of C:N ratio or BMP yield alone is not sufficiently adequate. A total picture has to be created which includes C:N ratio, BMP yield, harvest yield and availability. Potential feedstocks which best meet these requirements include for Grass silage, Milk processing waste (MPW) and Saccharina latissima. MPW has a potential of meeting over 6 times the required energy for Ireland’s 2020 transport in energy targets. S. Latissima recorded a yield of over 10,000 GJ ha-1 yr-1 which out ranks traditional second generation biofuels by a factor of more than 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simulation of the motion of molten aluminium inside an electrolytic cell is presented. Since the driving term of the aluminium motion is the Lorentz (j × B) body force acting within the fluid,this problem involves the solution of the magneto-hydro-dynamic equations. Different solver modules for the magnetic field computation and for the fluid motion simulation are coupled together. The interactions of all these are presented and discussed.