969 resultados para Probability distribution functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O conhecimento do modelo de distribuição espacial de pragas na cultura é fundamental para estabelecer um plano adequado de amostragem seqüencial e, assim, permitir a correta utilização das estratégias de controle e a otimização das técnicas de amostragem. Esta pesquisa objetivou estudar a distribuição espacial de lagartas de Alabama argillacea (Hübner) na cultura do algodoeiro, cultivar CNPA ITA-90. A coleta de dados ocorreu durante o ano agrícola de 1998/99 na Fazenda Itamarati Sul S.A., localizada no município de Ponta Porã, MS, em três diferentes áreas de 10.000 m² cada uma. Cada área amostral foi composta de 100 parcelas com 100 m² cada. Foi realizada semanalmente a contagem das lagartas pequenas, médias e grandes, encontradas em cinco plantas por parcela. Os índices de agregação (razão variância/média e índice de Morisita), o teste de qui-quadrado com o ajuste dos valores encontrados e esperados às distribuições teóricas de freqüência (Poisson, binomial positiva e binomial negativa), mostraram que todos os estádios das lagartas estão distribuídos de acordo com o modelo de distribuição contagiosa, ajustando-se ao padrão da Distribuição Binomial Negativa durante todo o período de infestação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monte Carlo simulations of water-amides (amide=fonnamide-FOR, methylfonnamide-NMF and dimethylformamide-DMF) solutions have been carried out in the NpT ensemble at 308 K and 1 atm. The structure and excess enthalpy of the mixtures as a function of the composition have been investigated. The TIP4P model was used for simulating water and six-site models previously optimized in this laboratory were used for simulating the liquid amides. The intermolecular interaction energy was calculated using the classical 6-12 Lennard-Jones potential plus a Coulomb term. The interaction energy between solute and solvent has been partitioned what leads to a better understanding of the behavior of the enthalpy of mixture obtained for the three solutions experimentally. Radial distribution functions for the water-amides correlations permit to explore the intermolecular interactions between the molecules. The results show that three, two and one hydrogen bonds between the water and the amide molecules are formed in the FOR, NMF and DMF-water solutions, respectively. These H-bonds are, respectively, stronger for DMF-water, NMF-water and FOR-water. In the NMF-water solution, the interaction between the methyl group of the NMF and the oxygen of the water plays a role in the stabilization of the aqueous solution quite similar to that of an H-bond in the FOR-water solution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adopting the framework of the Jaynes-Cummings model with an external quantum field, we obtain exact analytical expressions of the normally ordered moments for any kind of cavity and driving fields. Such analytical results are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering a specific initial state of the tripartite system, the normally ordered moments are then applied to investigate not only the squeezing effect and the nonlocal correlation measure based on the total variance of a pair of Einstein-Podolsky-Rosen type operators for continuous variable systems, but also the Shchukin-Vogel criterion. This kind of numerical investigation constitutes the first quantitative characterization of the entanglement properties for the driven Jaynes-Cummings model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive the formal expressions needed to discuss the change of the twist-two parton distribution functions when a hadron is placed in a medium with relativistic scalar and vector mean fields. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a well-developed framework, the Black-Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is flawed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black-Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more efficient hedging strategies of these instruments. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.