975 resultados para Pro-oxidant, Antioxidant, Tissue culture, Differentiation
Resumo:
This study aimed to evaluate the effect of substrate on growth, emergence, nutrition, and quality of Anacardium othonianum Rizz. (cerrado cashew tree) seedlings. The experiment was conducted in a greenhouse at the Plant Tissue Culture Laboratory on the Rio Verde campus. The following substrates were used: 1) Bioplant®, 2) Mecplant® (MP) + carbonized rice husk (CRH) (7:3), 3) fine-grained vermiculite (FGV), 4) FGV+CRH (3:1), 5) FGV+CRH (1:1), 6) FGV+CRH (1:3), and 7) sugarcane bagasse (SB) + sugarcane mill filter cake (FC) (3:2). Emerged seedlings were counted at 2-day intervals for 38 days following emergence of the first seedling. At 39, 64, and 89 days after seeding (DAS), the following variables were measured: stem length (SL), stem diameter (SD), and number of leaves (NL). Accumulated dry weight, quality indices, and leaf macro- and micronutrient levels were determined at 89 DAS. Plants grown in the FGV and FGV+CFH (1:3) substrates had shorter stem lengths than the plants grown in other substrates. Increases in seedling growth were smaller between 64 and 89 DAS compared to the initial period of the experiment. The highest leaf N concentrations were found in the SB+FC substrate treatment group; P and K concentrations were higher for the MP+CRH (7:3), SB+FC, and Bioplant® treatments; and Ca levels were higher for the SB+FC and MP+CRH (7:3) substrate treatments. The MP+CRH (7:3) substrate treatment group had the highest leaf B and Mn micronutrient concentrations, and plants from the Bioplant® substrate group had the highest leaf B micronutrient content. Mg, S, Cu, Zn, and Fe concentrations did not differ among the different substrates. The plant traits that differed most among the treatments included stem length for the FGV and FGV+CRH (1:3) substrate groups and leaf nutrient concentrations, which were higher for the SB+FC group followed by the MP+CRH and Bioplant® treatments.
Resumo:
Annonaceae is an ancient family of plants including approximately 50 genera growing worldwide in a quite restricted area with specific agroclimatic requirements. Only few species of this family has been cultivated and exploited commercially and most of them belonging to the genus Annona such as A. muricata, A. squamosa, the hybrid A. cherimola x A. squamosa and specially Annona cherimola: the cherimoya, commercially cultivated in Spain, Chile, California, Florida, México, Australia, Ecuador, Peru, Brazil, New Zealand and several countries in South and Central America. The cherimoya shows a high degree of heterozygosis, and to obtain homogeneous and productive orchards it is necessary to avoid the propagation by seeds of this species. Additionally, the traditional methods of vegetative propagation were inefficient and inadequate, due to the low morphogenetic potential of this species, and the low rooting rate. The in vitro tissue culture methods of micropropagation can be applied successfully to cherimoya and other Annona sp to overcome these problems. Most of the protocols of micropropagation and regeneration were developed using the cultivar Fino de Jete, which is the major cultivar in Spain. First it is developed the method to micropropagate the juvenile material of cherimoya (ENCINA et al., 1994), and later it was optimized a protocol to micropropagate adult cherimoya genotypes selected by outstanding agronomical traits (PADILLA and ENCINA, 2004) and further it was improved the process through micrografting (PADILLA and ENCINA, 2011).At the present time we are involved in inducing and obtaining new elite genotypes, as part of a breeding program for the cherimoya and other Annonas, using and optimizing different methodologies in vitro: a) Adventitious organogenesis and regeneration from cellular cultures (ENCINA, 2004), b) Ploidy manipulation of the cherimoya, to obtain haploid, tetraploid and triploid plants (seedless), c) Genetic transformation, for the genes introduction to control the postharvest processes and the genes introduction to provide resistance to pathogen and insects and d) Micropropagation and regeneration of other wild Annona or related Annonaceae species such as: Annona senegalensis, A. scleroderma, A. montana, A. reticulata, A. glabra, A. diversifolia and Rollinia sp.
Resumo:
Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.
Resumo:
This work was developed to adapt culture filtrates of Alternaria solani to be used in vitro selection of resistant potato. Three isolates of A. solani (I1 and I2) from Eldorado do Sul and Rio Pardo were used. Two liquid media, V8 and Czapek, were used to grow each of the fungal isolate, giving six culture filtrates (I1V8, I2V8, I3V8, I1Cz, I2Cz and I3Cz). Two sterilization forms, Millipore and autoclave were tested. There was no difference in these two sterilization forms. Tissue culture and toxic filtrates of A. solani have a potential to reduce the time in selection of resistant potato.
Resumo:
This study describes a simple and promising for in vitro multiplication of Tabernaemontana fuchsiaefolia, a species abundantly found in southern Brazil utilized for medicinal purposes and as a source of compounds that may be used to develop new synthetic drugs. Apical and hypocotyl explants were cultured in MS medium containing different concentrations of the cytokinins benzylaminopurine (BA) and 6-furfurylaminopurine (kinetin), supplemented with phloroglucinol (1, 3, 5-hydroxybenzene) to stimulate growth and shoot proliferation. Cytokinin added to the culture media positively influenced the micropropagation of T. fuchsiaefolia.and kinetin induced more shoots per explant than BA cytokinin. A favorable effect of phloroglucinol on apical and lateral buds from hypocotyls was also achieved in medium containing no kinetin or in all kinetin concentrations tested. Short pulses of auxin 3-indolebutyric acid (IBA) 5.0 mg/l resulted in satisfactory rooting in apical microcuttings. The addition of phloroglucinol to MS medium induced rhizogenesis in 29% of the nodal segments transferred to MS medium in the absence of IBA and in 50% of the nodal segments transferred to MS medium containing 0.5 mg/l IBA and in nodal segments previously submitted to short pulses of IBA.
Resumo:
Subcellular changes are relevant to understand plant organogenesis and embryogenesis in the early stages of cell development. The cytology during cell development in tissue culture is however still poorly characterized. This study aimed to characterize the ultrastructural differences related to callogenesis of anthers, ovaries, leaf and nodal segments of Inga vera Willd. subsp. Affinis (DC.) T.D. Penn. Flower buds, nodal segments and leaves were disinfected and inoculated in test tubes containing MS medium with 3% sucrose and 4.5µM 2.4-D, except for leaf callogenesis, where 9µM of this auxin was used, and for the callogenesis of anthers and ovaries, where the culture medium was enriched with 0.25% activated charcoal and 90µM PVP. After 45 days in culture medium, the anther, ovary, leaf and nodal segment calli were fixed in Karnovisky and prepared for visualization by scanning and transmission electron microscopy. Ultrastructural differences were observed among the callus cells of anthers, ovaries, segments and leaves. There was no evidence of somatic embryo formation in the anther, leaf and nodal segment calli, in spite of some embryogenic characteristics in the cells. The ovary calli, with indications of embryo formation, seem to be the most responsive explant source for embryogenesis.
Resumo:
Eucalyptus stands in the setting of worldwide forestry due to its adaptability, rapid growth, production of high-quality and low cost of wood pulp fibers. The eucalyptus convetional breeding is impaired mainlly by the long life cycle making the genetic transformation systems an important tool for this purpose. However, this system requires in vitro eficient protocols for plant induction, regeneration and seletion, that allow to obtain transgenic plants from the transformed cell groups. The aim of this work was to evaluate the callus formation and to optimize the leaves and callus genetic transformation protocol by using the Agrobacterium tumefaciens system. Concerning callus formation, two different culture media were evaluated: MS medium supplemented with auxin, cytokinin (M1) and the MS medium with reduced nitrogen concentration and supplemented with auxin, cytokinin coconut water (M2). To establish the leave genetic transformation, those were exposed to agrobiolistics technique (gene gun), to tissue injury, and A. tumesfasciens EHA 105 contening the vetor pCambia 3301 (35S::GUS::NOS), for gene transference and to establish the callus transformation thoses were exposed only to A. tumefasciens. For both experiments, the influence of different infection periods was evaluated. The M2 medium provided the best values for callus sizea and fresh and dry weight. The leaves genetic transformation using the agrobiolistics technique was effective, the gus gene transient expression could be observed. No significant differences were obtained in the infection periods (4, 6 and 8 minutes). The callus genetic transformation with A. tumefaciens also promotend the gus gene transient expression on the callus co-cultiveted for 15 e 30 minutes. The transformed callus was transfered to a regeneration and selection medium and transformed plants were obtained.
Resumo:
In the present study we investigated the presence of infections by vaccinia-like viruses in dairy cattle from 12 counties in the state of Rio de Janeiro in the last 9 years. Clinical specimens were collected from adult animals with vesicular/pustular lesions mainly in the udder and teats, and from calves with lesions around the nose and mouth. A plaque reduction neutralization test (PRNT) was applied to search for antibodies to Orthopoxvirus; the vesicular/pustular fluids and scabs were examined by PCR, electron microscopy (EM) and by inoculation in VERO cells for virus isolation. Antibodies to Orthopoxvirus were detected in most cases. The PCR test indicated a high nucleotide homology among the isolates and the vaccinia viruses (VACV) used as controls. By EM, typical orthopoxvirus particles were observed in some specimens. The agents isolated in tissue culture were confirmed as vaccinia-like viruses by EM and PCR. The HA gene of the vaccinia-like Cantagalo/IOC virus isolated in our laboratory was sequenced and compared with other vaccinia-like isolates, showing high homology with the original Cantagalo strain, both strains isolated in 1999 from dairy cattle. Antibodies to Orthopoxvirus were detected in one wild rodent (genus Akodon sp.) collected in the northwestern region of the state, indicating the circulation of poxvirus in this area. Nonetheless, PCR applied to tissue samples collected from the wild rodents were negative. Vesicular/pustular lesions in people in close contact with animals have been also recorded. Thus, the vaccinia-like virus infections in cattle and humans in the state seem to be an expanding condition, resulting in economic losses to dairy herds and leading to transient incapacitating human disease. Therefore, a possible immunization of the dairy cattle in the state should be carefully evaluated.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
(Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants). The uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid (2,4-D) were investigated in leaf calluses of Nicotiana tabacum, tuber calluses of Dioscorea opposita and calluses derived from zygotic embryos, leaves and petioles of Dioscorea composita. Striking similarities were evident in the patterns of 2,4-D metabolites and their chemical characteristics in the three callus types of D. composita compared, but significant differences were detected among the patterns of rnetabolites in the three species studied. Preliminary investigations on the stability of various metabolites (separated using TLC) by hydrolysis showed that sugar esters appeared to be the major metabolites in tobacco whilst in yams (D. opposita) glycosides were shown to be the main ones, which indicated a similarity between plants of Gramineae and Dioscoreaceae in terms of 2,4-D metabolism. Release of 2,4-D from tobacco callus cells upon their transfer to 2,4-D-free medium was detected and the implications of this are discussed in relation to the cultural conditions necessary to induce morphogenesis in vitro.
Resumo:
We used axillary buds as initial explants for hormone interaction studies required for in vitro cultivation of S. allagophylla. Callus production was achieved on gelled Murashige & Skoog medium (MS) supplemented with indole-3-acetic acid (IAA= 0.1 and 0.5 mg.l1 alone or combined with 6 benzylaminopurine) (BA= 0.01 and 0.1 mg.l-1). A hormone balance between IAA and BA that would encourage shoot bud development was not found. Nodal segments from axenic cultures grown in the presence of cytokinin (0.1 mg.11 of BA) without any auxin on MS medium with half-strength macronutrients were used as a standard explant source for subsequent experiments on optimum mineral culture media composition for S. allagophylla in vitro cultivation. We found that explants kept in vitro on gelled Gamborg et al. (B5) mineral composition culture medium showed better shoot and specially root growth than on MS medium. Comparisons of the ammonium and nitrate ratios of MS and B5 media indicate that B5 medium has a substantial reduced ammonium ion when compared to MS medium, as well as a lower total nitrogen level. The growth response pattern obtained in vitro may be evidence of the adaptation of this species to soils of poor mineral composition as found in the Brazilian cerrado, as well as an indication that nitrogen levels play a key role for S. allagophylla growth.
Resumo:
Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each). Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.
Resumo:
The aim of the present study was to demonstrate the presence of alpha-L-fucosidase in Trypanosoma cruzi. Immunocytochemical and biochemical techniques were used to localize and characterize a membrane-associated, neutral-pH-optimum, alpha-L-fucosidase from the parasite. Light and electron microscopy localized the alpha-L-fucosidase specifically on the surface of the parasite and on membranes in the posterior region of the epimastigote stage. Although much less intense, labeling was also detected on the surface of trypomastigotes. At least 50% of the alpha-L-fucosidase activity was associated with epimastigote membrane solubilized with 1 M NaCl or 1% Triton X-100, suggesting that alpha-L-fucosidase is peripherally associated with membranes. The enzyme from epimastigotes had a neutral pH optimum (near 7) but displayed low specific activity when p-nitrophenyl-alpha-L-fucoside was employed as substrate (0.028 U/mg protein for epimastigotes and 0.015 U/mg protein for tissue culture-derived trypomastigotes). Polyacrylamide gel electrophoresis and Western blotting analysis both showed an expected 50-kDa polypeptide which was immunoreactive with anti-alpha-L-fucosidase antibodies.
Resumo:
Mast cell progenitors arise in bone marrow and then migrate to peripheral tissues where they mature. It is presumed that integrin receptors are involved in their migration and homing. In the present study, the expression of various integrin subunits was investigated in three systems of adherent and nonadherent mast cells. Mesentery mast cells, freshly isolated bone marrow-derived mast cells (BMMC) and RBL-2H3 cells grown attached to tissue culture flasks are all adherent mast cells and peritoneal mast cells, and cultured BMMC and RBL-2H3 cells grown in suspension represent nonadherent mast cell populations. Pure populations of mast cells were immunomagnetically isolated from bone marrow, mesentery and peritoneal lavage using the mast cell-specific monoclonal antibody AA4. By immunomicroscopy, we could demonstrate that all of these mast cells expressed alpha4, alpha5, alpha6, ß1 and ß7 integrin subunits. The expression of the alpha4 integrin subunit was 25% higher in freshly isolated mesentery mast cells and BMMC. Consistent with the results obtained by immunomicroscopy, mesentery mast cells expressed 65% more mRNA for the alpha4 integrin subunit than peritoneal mast cells. In vitro studies were also conducted using the rat mast cell line RBL-2H3. RBL-2H3 cells grown attached to the tissue culture flasks or as suspension cultures expressed the same integrin subunits identified in bone marrow, mesenteric and peritoneal mast cells ex vivo. Similarly, the expression of alpha4 integrin was higher in adherent cells. Therefore, alpha4 integrins may play a critical role in the anchorage of mast cells to the extracellular matrix in bone marrow and in peripheral tissues.
Resumo:
Hepatitis A virus (HAV) replicates relatively slowly in cell culture without a cytopathic effect, a fact that limits the use of tissue culture assays. The radioimmunofocus assay is the standard method for HAV titration, although it is labor intensive and requires the use of radioisotopes. A simple, rapid and objective infectivity assay based on an in situ enzyme immunoassay (EIA) is described here for a Brazilian cell culture-adapted HAV strain (HAF-203). The assay uses a peroxidase-labeled polyclonal antibody to fixed monolayers as an indicator of infection. EIA may be completed within 7 days using serial 5-fold dilutions of the virus, yielding a titer of 5.024 log 50% tissue culture infective dose (TCID50)/ml for HAF-203. This technique had a detection limit of 1.1 log TCID50/ml and the specificity was demonstrated by detecting no reaction on the columns of uninfected wells. The reproducibility (with intra- and inter-assay coefficients of variation ranging from 1.9 to 3.8% and from 3.5 to 9.9%, respectively) and quantitation of the assay were demonstrated by close agreement in virus infectivity titers among different assays of the same amount of virus and between assays of different amounts of virus. Furthermore, this assay does not require the use of radiolabeled antibodies. We describe here an efficient EIA that is highly reproducible and that could be used to monitor HAV growth in cell culture and to determine the quantity of HAV antigen needed for diagnostic assays. This is the first report of the infectious titer of the Brazilian cell culture-adapted HAV strain (HAF-203).