935 resultados para Pro- and anti-inXammatory cytokines
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^
Resumo:
The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^
Resumo:
Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.
Resumo:
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Resumo:
Growth, differentiation, and programmed cell death (apoptosis) are mainly controlled by cytokines. The Janus kinase–signal transducers and activators of transcription (JAK-STAT) signal pathway is an important component of cytokine signaling. We have previously shown that STAT3 induces a molecule designated as SSI-1, which inhibits STAT3 functions. To clarify the physiological roles of SSI-1 in vivo, we generated, here, mice lacking SSI-1. These SSI-1−/− mice displayed growth retardation and died within 3 weeks after birth. Lymphocytes in the thymus and spleen of the SSI-1−/− mice exhibited accelerated apoptosis with aging, and their number was 20–25% of that in SSI-1+/+ mice at 10 days of age. However, the differentiation of lymphocytes lacking SSI-1 appeared to be normal. Among various pro- and anti-apoptotic molecules examined, an up-regulation of Bax was found in lymphocytes of the spleen and thymus of SSI-1−/− mice. These findings suggest that SSI-1 prevents apoptosis by inhibiting the expression of Bax.
Resumo:
Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.
Resumo:
Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling.
Resumo:
High-affinity folate receptors (FRs) are expressed at elevated levels on many human tumors. Bispecific antibodies that bind the FR and the T-cell receptor (TCR) mediate lysis of these tumor cells by cytotoxic T lymphocytes. In this report, conjugates that consist of folate covalently linked to anti-TCR antibodies are shown to be potent in mediating lysis of tumor cells that express either the alpha or beta isoform of the FR. Intact antibodies with an average of five folate per molecule exhibited high affinity for FR+ tumor cells but did not bind to FR- tumor cells. Lysis of FR+ cell lines could be detected at concentrations as low as 1 pM (approximately 0.1 ng/ml), which was 1/1000th the concentration required to detect binding to the FR+ cells. Various FR+ mouse tumor cell lines could be targeted with each of three different anti-TCR antibodies that were tested as conjugates. The antibodies included 1B2, a clonotypic antibody specific for the cytotoxic T cell clone 2C; KJ16, an anti-V beta 8 antibody; and 2C11, an anti-CD3 antibody. These antibodies differ in affinities by up to 100-fold, yet the cytolytic capabilities of the folate/antibody conjugates differed by no more than 10-fold. The reduced size (in comparison with bispecific antibodies) and high affinity of folate conjugates suggest that they may be useful as immunotherapeutic agents in targeting tumors that express folate receptors.
Resumo:
All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA), the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.