989 resultados para Polytene chromosomes
Resumo:
An intrinsic feature of yeast artificial chromosomes (YACs) is that the cloned DNA is generally in the same size range (i.e., approximately 200-2000 kb) as the endogenous yeast chromosomes. As a result, the isolation of YAC DNA, which typically involves separation by pulsed-field gel electrophoresis, is frequently confounded by the presence of a comigrating or closely migrating endogenous yeast chromosome(s). We have developed a strategy that reliably allows the isolation of any YAC free of endogenous yeast chromosomes. Using recombination-mediated chromosome fragmentation, a set of Saccharomyces cerevisiae host strains was systematically constructed. Each strain contains defined alterations in its electrophoretic karyotype, which provide a large-size interval devoid of endogenous chromosomes (i.e., a karyotypic "window"). All of the constructed strains contain the kar1-delta 15 mutation, thereby allowing the efficient transfer of a YAC from its original host into an appropriately selected window strain using the kar1-transfer procedure. This approach provides a robust and efficient means to obtain relatively pure YAC DNA regardless of YAC size.
Resumo:
Chromosome rearrangements, such as large deletions, inversions, or translocations, mediate migration of large DNA segments within or between chromosomes, which can have major effects on cellular genetic control. A method for chromosome manipulation would be very useful for studying the consequences of large-scale DNA rearrangements in mammalian cells or animals. With the use of the Cre-loxP recombination system of bacteriophage P1, we induced a site-specific translocation between the Dek gene on chromosome 13 and the Can gene on chromosome 2 in mouse embryonic stem cells. The estimated frequency of Cre-mediated translocation between the nonhomologous mouse chromosomes is approximately 1 in 1200-2400 embryonic stem cells expressing Cre recombinase. These results demonstrate the feasibility of site-specific recombination systems for chromosome manipulation in mammalian cells in vivo, breaking ground for chromosome engineering.
Resumo:
In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.
Resumo:
We have developed a surface mounting technology for the rapid construction of ordered restriction maps from individual DNA molecules. Optical restriction maps constructed from yeast artificial chromosome DNA molecules mounted on specially derivatized glass surfaces are accurate and reproducible, and the technology is amenable to automation. The mounting procedures described here should also be useful for fluorescence in situ hybridization studies. We believe these improvements to optical mapping will further stimulate the development of nonelectrophoretic approaches to genome analysis.
Resumo:
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.
Resumo:
The disruption of the BCR gene and its juxtaposition to and consequent activation of the ABL gene has been implicated as the critical molecular defect in Philadelphia chromosome-positive leukemias. The normal BCR protein is a multifunctional molecule with domains that suggest its participation in phosphokinase and GTP-binding pathways. Taken together with its localization to the cytoplasm of uncycled cells, it is therefore presumed to be involved in cytoplasmic signaling. By performing a double aphidicolin block for cell cycle synchronization, we currently demonstrate that the subcellular localization of BCR shifts from being largely cytoplasmic in interphase cells to being predominantly perichromosomal in mitosis. Furthermore, with the use of immunogold labeling and electron microscopy, association of BCR with DNA, in particular heterochromatin, can be demonstrated even in quiescent cells. Results were similar in cell lines of lymphoid or myeloid origin. These observations suggest a role for BCR in the phosphokinase interactions linked to condensed chromatin, a network previously implicated in cell cycle regulation.
Resumo:
Mode of access: Internet.
Resumo:
This series of articles describes the basic elements of genetics necessary to understand the new advances and the impact these advances will have on the study and treatment of ocular disease. The first article describes the patterns of inheritance of human characteristics, how they are transmitted between the generations and the structure of chromosomes.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.