968 resultados para Polynomial Invariants
Resumo:
Abstract not available
Resumo:
We develop some new techniques to calculate the Schur indicator for self-dual irreducible Langlands quotients of the principal series representations. Using these techniques we derive some new formulas for the Schur indicator and the real-quaternionic indicator. We make progress towards developing an algorithm to decide whether or not two root data are isomorphic. When the derived group has cyclic center, we solve the isomorphism problem completely. An immediate consequence is a clean and precise classification theorem for connected complex reductive groups whose derived groups have cyclic center.
Resumo:
In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy Littlewood constants for 2-homogeneous polynomials on l(p)(2) spaces, 2 < p <= infinity. We also provide lower estimates for the Hardy-Littlewood constants for polynomials of higher degrees.
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.
Resumo:
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.
Resumo:
Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang,, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Resumo:
We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.
Resumo:
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.
Resumo:
Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.
Resumo:
Modelling of interferometric signals related to tear film surface quality is considered. In the context of tear film surface quality estimation in normal healthy eyes, two clinical parameters are of interest: the build-up time, and the average interblink surface quality. The former is closely related to the signal derivative while the latter to the signal itself. Polynomial signal models, chosen for a particular set of noisy interferometric measurements, can be optimally selected, in some sense, with a range of information criteria such as AIC, MDL, Cp, and CME. Those criteria, however, do not always guarantee that the true derivative of the signal is accurately represented and they often overestimate it. Here, a practical method for judicious selection of model order in a polynomial fitting to a signal is proposed so that the derivative of the signal is adequately represented. The paper highlights the importance of context-based signal modelling in model order selection.
Resumo:
Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.