947 resultados para Poly(tetrafluoroethylene-co-perfluoromethylvinylether)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant number of poly a-ester homologues of poly(L-lactide) (PLLA) have been synthesized and used in miscibility studies together with conventional isomeric diacid-diol polyester variants, poly ß-esters (based on ß-hydroxybutyrate (HB) and ß-hydroxyvalerate (HV)), poly e-caprolactone (PCL), poly e-caprolactone copolymers (e.g. poly(L-lactide-co-caprolactone), and a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP)). A combinatorial approach to rapid miscibility screening using 96-well plates and a uv-visible multi-wavelength plate reader has been developed enabling the clarity of PLLA-based multi-component blend films to be observed. Using these techniques and materials, the ternary phase compatibility diagrams of a range of three-component blend films was prepared, illustrating ranges of behavior varying from miscible blends giving rise to clear films to immiscible blends which are opaque. In this way, novel three-component blends of PLLA/CAB/PCL were developed which are miscible when the CAB content is more than 30%, PLLA less than 80% and PCL less than 60%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(l-lactide) (PLL) has been blended with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer as a toughening agent and a poly(l-lactide-co-caprolactone) (PLLCL) copolymer as a compatibilizer. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends were prepared by melt mixing, characterized, hot-pressed into thin sheets and their tensile properties tested. The results showed that, although the TPU could toughen the PLL, the blends were largely immiscible leading to phase separation. However, addition of the PLLCL copolymer improved blend compatibility. The best all-round properties were found for the 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, and more recently, fiber-based scaffolds produced via the electrospinning have been garnering increasing interest, as it offers the opportunity for control over fiber composition, as well as fiber mesh porosity using a relatively simple experimental setup. All these attributes make electrospun fibers a new class of promising scaffolds for neural tissue engineering. Therefore, the purpose of this doctoral study is to investigate the use of the novel material PGD and its derivative PGDF for obtaining fiber scaffolds using the electrospinning. The performance of these scaffolds, combined with neural lineage cells derived from ESCs, was evaluated by the dissolvability test, Raman spectroscopy, cell viability assay, real time PCR, Immunocytochemistry, extracellular electrophysiology, etc. The newly designed collector makes it possible to easily obtain fibers with adequate length and integrity. The utilization of a solvent like ethanol and water for electrospinning of fibrous scaffolds provides a potentially less toxic and more biocompatible fabrication method. Cell viability testing demonstrated that the addition of gelatin leads to significant improvement of cell proliferation on the scaffolds. Both real time PCR and Immunocytochemistry analysis indicated that motor neuron differentiation was achieved through the high motor neuron gene expression using the metabolites approach. The addition of Fumaric acid into fiber scaffolds further promoted the differentiation. Based on the results, this newly fabricated electrospun fiber scaffold, combined with neural lineage cells, provides a potential alternate strategy for nerve injury repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The herpes simplex virus (HSV) UL31 gene encodes a conserved member of the herpesvirus nuclear egress complex that not only functions in the egress of DNA-containing capsids from the nucleus, but is also required for optimal viral genome expression, replication and packaging into capsids. Here, we report that the UL31 protein from HSV-2 and the orthologous protein, ORF69, from Kaposi's sarcoma-associated herpesvirus (KSHV) are recruited to sites of DNA damage. Recruitment of UL31 to sites of DNA damage occurred in HSV-2 infected cells, but did not require other viral proteins. The N-terminus of UL31 contains sequences resembling a poly(ADP-ribose) (PAR) binding motif. As protein poly-ADP ribosylation (PARylation) is a hallmark of the DNA damage response we examined the relationship between PARylation and UL31 recruitment to DNA damage. While the PAR polymerase (PARP)1/2 inhibitor, olaparib, prevented UL31 recruitment to damaged DNA, KU55933 inhibition of signaling through the ataxia telangiectasia mutated (ATM) DNA damage response pathway had no effect. These findings were further supported by experiments demonstrating direct and specific interaction between HSV-2 UL31 and PAR using purified components. Co-transfection with the viral kinase Us3, known to phosphorylate UL31, inhibited UL31 recruitment to DNA damage but also prevented the recruitment of other proteins recruited to DNA damage sites. The viral E3 ubiquitin ligase ICP0 was observed to co-localize with UL31 in transfected cells in a manner that is independent of the PAR-binding ability of UL31. However, inhibition of PARP1/2/3 did not reduce the ability of HSV-2 to replicate and we observed reduced PAR levels in the nuclei of infected cells. This study reveals a previously unrecognized function for UL31 orthologs and may suggest that the recognition of PAR by UL31 is coupled to the nuclear egress of herpesvirus capsids, influences viral DNA replication and packaging, or possibly modulates the DNA damage response mounted by virally infected cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the liquid-liquid and solid-liquid phase behaviour of ten aqueous pseudo-binary and three binary systems containing polyethylene glycol (PEG) 2050, polyethylene glycol 35000, aniline, N,N-dimethylaniline and water, in the temperature range 298.15-350.15 K and at ambient pressure of 0.1 MPa, was studied. The obtained temperature-composition phase diagrams showed that the only functional co-solvent was PEG2050 for aniline in water, while PEG35000 even showed a clear anti-solvent effect in the N,N-dimethylaniline aqueous system. The experimental solid-liquid equilibria (SLE) data have been correlated by the non-random two-liquid (NRTL) model, and the correlation results are in accordance with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master, Biomedical & Molecular Sciences) -- Queen's University, 2016-08-23 15:03:30.807

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon (AC) has proved to be an effective adsorbent for the removal of an assortment of organic and inorganic pollutants from aqueous or gaseous media. However, the pursuit for more effective and cheaper AC is still very active and a diversity of textural and chemical treatments are described as a way to expand their applications. It is well known that the surface area and surface chemistry of AC strongly affect their adsorption capacity [1-3]. In particular, an increase in the nitrogen content has been related to an increase of the basic character and also to the development of the porous structure. In most published work this was achieved through an AC post treatment, including either a reaction with nitrogen containing reagents, such as ammonia, nitric acid, or a diversity of amines. However, the AC prepared directly from a nitrogen rich precursor through a physical or chemical activation is referred to as presenting the best characteristics, namely high nitrogen content, high basic character, low nitrogen leaching and also a good thermal stability [4]. To improve the AC adsorption capacities for acidic pesticide removal from the aqueous phase, we intend to improve the porous structure and introduce nitrogenated groups directly into the AC matrix, using different co-adjuvant activating agents as a nitrogen source, by chemical activation, with potassium hydroxide, of cork or poly(ethyleneterephthalate) (PET) precursors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastics are polymers of conventional and extensive use in our day-to-day life. This is due to their light weight, adaptability to different uses and low prices. A downside of such extensive use is the environmental pollution arising from plastic production and disposal. Indeed, many commodity polymers are produced from non-renewable resources while other do not bio-degrade after their end-of-life disposal. Consequently, the ideal polymer comes from renewable raw materials and bio-degrades after its disposal, meaning that it would do little or no harm to the environment from the beginning to the end of its life cycle. In this thesis project a class of bio-based and bio-degradable co-polymers, namely poly(ester-amide)s, was investigated because of their tunable mechanical and bio-degradation properties as well as their renewable origin. Such polymers were synthetized and characterized thermically and mechanically. Furthermore, a scale-up procedure was developed and applied to one polymer and processing trials were made with the material obtained after scale-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida biofilms on denture surfaces are substantially reduced after a single immersion in denture cleanser. However, whether this effect is maintained when dentures are immersed in cleanser daily is unclear. The purpose of this study was to evaluate the effect of the daily use of enzymatic cleanser on Candida albicans biofilms on denture base materials. The surfaces of polyamide and poly(methyl methacrylate) resin specimens (n=54) were standardized and divided into 12 groups (n=9 per group), according to study factors (material type, treatment type, and periods of treatment). Candida albicans biofilms were allowed to form over 72 hours, after which the specimens were treated with enzymatic cleanser once daily for 1, 4, or 7 days. Thereafter, residual biofilm was ultrasonically removed and analyzed for viable cells (colony forming units/mm(2)) and enzymatic activity (phospholipase, aspartyl-protease, and hemolysin). Factors that interfered with the response variables were analyzed by 3-way ANOVA with the Holm-Sidak multiple comparison method (α=.05). Polyamide resin presented more viable cells of Candida albicans (P<.001) for both the evaluated treatment types and periods. Although enzymatic cleansing significantly (P<.001) reduced viable cells, daily use did not maintain this reduction (P<.001). Phospholipase activity significantly increased with time (P<.001) for both materials and treatments. However, poly(methyl methacrylate) based resin (P<.001) and enzymatic cleansing treatment (P<.001) contributed to lower phospholipase activity. Aspartyl-protease and hemolysin activities were not influenced by study factors (P>.05). Although daily use of an enzymatic cleanser reduced the number of viable cells and phospholipase activity, this treatment was not effective against residual biofilm over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P < .05) by methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P < .05). The tensile bond strength was higher for the methyl methacrylate and ethyl acetate groups (P < .05). No correlation was found regarding surface properties and tensile bond strength. Specimens treated with acetone and methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the positive temperature coefficient of resistivity (PTCR) in Er3+ and Ca2+ co-doped ferroelectric BaTiO3 was studied in this work, with Er3+ being used to act as a donor doping. Irrespective of all the materials showing high densities after sintering at 1200 to 1300 ºC, these revealed insulator at the lowest sintering temperature, changing to semiconducting and PTCR-type materials only when the sintering temperature was further increased. Observations from X-ray diffraction help correlating this effect with phase development in this formulated (Ba,Ca,Er)TiO3 system, considering the formation of initially two separated major (Ba,Ca)TiO3- and minor (Ca,Er)TiO3-based compounds, as a consequence of cation size-induced stress energy effects. Thus, appearance and enhancement here of the semiconducting and PTCR responses towards higher sintering temperatures particularly involve the incorporation of Er3+ into the major phase, rendering finally possible the generation and "percolative-like" migration of electrons throughout the whole material.