893 resultados para Pliny, the Younger.
Resumo:
Cores HU82-034-057 and HU84-035-008, Resolution Basin, SE Baffin Shelf, contain 200 and 450 cm, respectively, of sediment that spans the Younger Dryas chron. In both cores the interval is bracketed by 14C dates on foraminifera or molluscs. These sites were close to the margin of the late Wisconsin (Foxe) ice sheet as it flowed toward the Labrador Sea. Prior to 11 ka, both cores record moderate to high accumulations of foraminifera, relatively high del 18O values in planktonic foraminifera, and low values of detrital carbonate. The diatom and percent opal records imply occasional seasonally open water conditions. During part of the Younger Dryas chron both the diatom and opal analyses imply a shutoff of biogenic silica production, suggesting surface water conditions affected by increased sea ice and/or reduced nutrients. In addition, the Younger Dryas interval is marked by an increase in coarse sand and detrital carbonate, a decrease in total organic carbon and foraminifera, and high rates of sediment accumulation. The inferred environment during the Younger Dryas is ice-proximal. In HU82-034-057, the foraminifera and other data suggest a change in conditions during the middle part of the Younger Dryas chron.
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.
Resumo:
Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.
Resumo:
To examine the processes and histories of arc volcanism and of volcanism associated with backarc rifting. 130 samples containing igneous glass shards were taken from the Plioccne-Quatemai^ succession on the rift Hank (Site 788) and the Quaternary fill in the basin fill of the Sumisu Rift (Sites 790 and 791). These samples were subsequently analyzed at the University of Illinois at Chicago and Shizuoka University. The oxides determined by electron probe do not account for the total weight of the material; differences between summed oxides and 100% arise from the water contents, probably augmented by minor losses thai result from alkali vaporization during analysis. Weight losses in colorless glasses are up to 9%; those in brown glasses (dacitcs to basalts) arc no more than 4.5%; shards from the rift-flank (possibly caused by prolonged proximity to ihc scafloor) generally have higher values than those from the rift-basin fill How much of the lost water is magmatic, and how much is hydrated is uncertain; however, although the shards absorb potassium, calcium, and magnesium during hydration in the deep sea, they do so only to a minor extent that does not significantly alter their major element compositions. Therefore, the electron-probe results are useful in evaluating the magmatism recorded by the shards. Pre- and syn-rift Izu-Bonin volcanism were overwhelmingly dominated by rhyolile explosions, demonstrating that island arcs may experience significant silicic volcanism in addition to the extensive basaltic and basaltic andestic activity, documented in many arcs since the 1970s, that occurs in conjunction with the andesitic volcanism formerly thought to be dominant. Andesitic eruptions also occurred before rifting, but the andesitic component in our samples is minor. All the pre- and syn-rift rhyolites and andesites belong to the low-alkali island-arc tholeiitic suite, and contrast markedly with the alkali products of Holocene volcanism on the northernmost Mariana Arc that have been attributed to nascent rifting. The Quaternary dacites and andesites atop the rift flank and in the rift-basin fill are more potassic than those of Pliocene age, as a result of assimilation from the upper arc crust, or from variations in degrees of partial melting of the source magmas, or from metasomatic fluids. All the glass layers from the rift-flank samples belong to low-K arc-tholeiitic suites. Half of those in the Pliocene succession are exclusively rhyolitic: the others contain minor admixtures of dacite and andesite, or andesite and either basaltic andesite or basalt. In Contrast, the Quaternary (syn-rift) volcaniclastics atop the rift-flank lack basalt and basaltic andesite shards. These youngest sediments of the rift flank show close compositional affinities with five thick layers of coarse, rhyolitic pumice deposits in the basin fill, the two oldest more silicic than the younger ones. The coarse layers, and most thin ash layers that occur in hemipelagites below and intercalated between them, are low-K rhyolites and therefore probably came from sources in the arc. However, several thin rhyolitic ash beds in the hemipelagites are abnormally enriched in potassium and must have been provided by more distal sources, most likely to the west in Japan. Remarkably, the Pliocene-Pleistocene geochemistry of the volcanic front does not appear to have been influenced by the syn-rift basaltic volcanism only a few kilometers away. Rare, thin layers of basaltic ash near the bases of the rift-basin successions are not derived from the arc. They deviate strongly from trends that the arc-derived glasses display on oxide-oxide plots, and show close affinities to the basalts empted all over the Sumisu Rift during rifting. These basalts, and the basaltic ashes in the basal rift-basin fill, arc compositionally similar to those erupted from mature backarc basins elsewhere.
Resumo:
Temporal and regional changes in paleoproductivity and paleoceanography in the eastern Mediterranean Sea during the past 12 kyr were reconstructed on the basis of the stable oxygen and carbon isotope composition of the epibenthic Planulina ariminensis and the shallow endobenthic Uvigerina mediterranea from three sediment cores of the Aegean Sea and Levantine Basin. The Younger Dryas is characterized by high d18O values, indicating enhanced salinities and low temperatures of deep water masses at all investigated sites. With the onset of the Holocene, d18O records show a continuous decrease towards the onset of sapropel S1 formation, mainly caused by a freshening and warming of surface waters at deep water formation sites. In the middle and late Holocene, the similarity of d18O values from the southern Aegean Sea and Levantine Basin suggests the influence of isotopically identical deep water masses. By contrast, slightly higher d18O values are observed the northern Aegean Sea, which probably point to lower temperatures of North Aegean deep waters. The epifaunal d13C records reveal clear changes in sources and residence times of eastern Mediterranean deep waters associated with period of S1 formation. Available data for the early and late phase of sapropel S1 formation and for the interruption around 8.2 kyr display drops by 0.5 and 1.5 per mil, indicating the slow-down of deep water circulation and enhanced riverine input of isotopically light dissolved inorganic carbon from terrestrial sources into the eastern Mediterranean Sea. The decrease in epifaunal d13C signals is particularly expressed in the southern Aegean Sea and Levantine Basin, while it is less pronounced in the northern Aegean Sea. This points to a strong reduction in deep water exchange rates in the southern areas, but the persistence of local deep water formation in the northern Aegean Sea. The d13C values of U. mediterranea records reveal temporal and regional differences in paleoproductivity during the past 12 kyr, with rather eutrophic and mesotrophic conditions in the North Aegean Sea and southeast Levantine Basin, respectively, while the South Aegean Sea is characterized by rather oligotrophic conditions. After S1 formation, increasing d13C values reflect a progressive decrease in surface water productivity in the eastern Mediterranean Sea during the middle and late Holocene. In the northern Aegean Sea, this time interval is marked by repetitive changes in organic matter fluxes documented by significant fluctuations in the d13C signal of U. mediterranea on millennial- to multi-centennial time scales. These fluctuations can be linked to short-term changes in river runoff driven by northern hemisphere climatic variability.
Resumo:
At Deep Sea Drilling Site 384 (J-Anomaly Ridge, Grand Banks Continental Rise, NW Atlantic Ocean) Paleocene nannofossil chalks and oozes (~70 m thick) are unconformably/disconformably underlain (~168 m; upper Maastrichtian) and overlain (~98.7 m; upper lower Eocene) by sediments of comparable lithologies. The chalks are more indurated in stratigraphically higher levels of the Paleocene reflecting increasing amounts of biosiliceous (radiolarians and diatoms) components. This site serves as an excellent location for an integrated calcareous and siliceous microfossil zonal stratigraphy and stable isotope stratigraphy. We report the results of a magnetostratigraphic study which, when incorporated with published magnetostratigraphic results, reveals an essentially complete magnetostratigraphic record spanning the interval from Magnetochron C31n (late Maastrichtian) to C25n (partim) (late Paleocene, Thanetian). Integrated magnetobiochronology and stable isotope stratigraphy support the interpretation of, and constrain the estimated duration of, a short hiatus (~0.9 my) within the younger part of Chron C29r (including the K/P boundary) and an ~6 my hiatus separating upper Paleocene (Magnetozone C25n) and upper lower Eocene (Magnetozone C22r) sediments. Some 30 planktonic foraminiferal datum levels [including the criteria used to denote the Paleocene planktonic foraminiferal (sub)tropical zonal scheme of Berggren and Miller, Micropaleontology 34 (4) (1988) 362-380 and Berggren et al., SEPM Spec. Publ. 54 (1995) 129-212, Geol. Soc. Am. Bull. 107 (11) (1995) 1272-1287], and nearly two dozen calcareous nannoplankton datum levels have been recognized and calibrated to the magnetochronology. Planktonic foraminiferal Subzones P4a and P4b of (upper Paleocene) Zone P4 are emended/redefined based on the discovery of a longer stratigraphic extension of Acarinina subsphaerica (into at last Magnetozone C25n). Stable isotope stratigraphies from benthic foraminifera and fine fraction (<38 µm) carbonate have been calibrated to the biochronology and magnetostratigraphy. A minimum in benthic foraminifer delta13C was reached near the Danian/Selandian boundary (within Chron C26r, planktonic foraminiferal Zone P3a and calcareous nannoplankton Zone NP4) and is followed by the rise to maximum delta13C values in the late Thanetian (near the base of C25n, in Zone P4c and NP9a, respectively) that can be used for global correlation in the Paleocene.
Resumo:
New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.
Resumo:
Detailed 14C AMS data and isotope based stratigraphies from high-resolution paleoceanographic records for the last 22 ka of cores from the upper continental slope off NE Brazil reveal sedimentation rates of up to 100 cm per 1000 yr. Variations in the sediment composition relate to changes in the input of terrigenous material. The sedimentation is controlled by sea level and by the climatic regime of the hinterland. Short-term changes in the tropical wind field may act as a climatic trigger. The zonality of the SE trades was probably increased and the monsoonal activity over Africa reduced during the Younger Dryas period.
Resumo:
The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
Resumo:
This paper documents the migration of the Polar Front (PF) over the Iberian margin during some of the cold climatic extremes of the last 45 ka. It is based on a compilation of robust and coherent paleohydrological proxies obtained from eleven cores distributed between 36 and 42°N. Planktonic delta18O (Globigerina bulloides), ice-rafted detritus concentrations, and the relative abundance of the polar foraminifera Neogloboquadrina pachyderma sinistral were used to track the PF position. These three data sets, compared from core to core, show a consistent evolution of the sea surface paleohydrology along the Iberian margin over the last 45 ka. We focused on five time slices representative of cold periods under distinct paleoenvironmental forcings: the 8.2 ka event and the Younger Dryas (two recent cold events occurring within high values of summer insolation), Heinrich events 1 and 4 (reflecting major episodes of massive iceberg discharges into the North Atlantic), and the Last Glacial Maximum (typifying the highest ice volume accumulated in the Northern Hemisphere). For each event, we generated schematic maps mirroring past sea surface hydrological conditions. The maps revealed that the Polar Front presence along the Iberian margin was restricted to Heinrich events. The sea surface conditions during the Last Glacial Maximum were close to those at present day, except for the northern sites which briefly experienced subarctic conditions.
Resumo:
Current geochronological data on the Okhotsk-Chukotka volcanic belt (OCVB) and relevant problems are discussed. The belt evolution is suggested to be modeled based on 40Ar/39Ar and U-Pb dates more useful in several aspects than common K-Ar or Rb-Sr dates and methods of paleobotanical correlation. Based on new40Ar/39Ar and U-Pb dates obtained for volcanic rocks in the OCVB northern part, the younger (Coniacian) age is established for lower stratigraphic units in the Central Chukotka segment of the belt, and eastward migration of volcanic activity is shown for terminal stages of this structure evolution.
Resumo:
Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth's global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled d11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.
Resumo:
A high-resolution, accelerator radiocarbon dated climate record of the interval 8,000-18,000 years B.P. from Deep Sea Drilling Project site 480 (Guaymas Basin, Gulf of California) shows geochemical and lithological oscillations of oceanographic and climatic significance during deglaciation. Nonlaminated sediments are associated with cooler climatic conditions during the late glacial (up to 13,000 years B.P.), and from 10,300 to 10,800 years B.P., equivalent to the Younger Dryas event of the North Atlantic region. We propose that the changes from laminated (varved) to nonlaminated sediments resulted from increased oxygen content in Pacific intermediate waters during the glacial and the Younger Dryas episodes, and that the forcing for the latter event was global in scope. Prominent events of low delta18O are recorded in benthic foraminifera from 8,000 to 10,000 and at 12,000 years B.P.; evidence for an earlier event between 13,500 and 15,000 years B.P. is weaker. Maximum delta18O is found to have occurred 10,500, 13,500, and 15,000 years ago (and beyond). Oxygen isotopic variability most likely reflects changing temperature and salinity characteristics of Pacific waters of intermediate depth during deglaciation or environmental changes within the Gulf of California region. Several lines of evidence suggest that during deglaciation the climate of the American southwest was marked by increased precipitation that could have lowered salinity in the Gulf of California. Recent modelling studies show that cooling of the Gulf of Mexico due to glacial meltwater injection, which is believed to have occurred at least twice during deglaciation, would have resulted in increased precipitation with respect to evaporation in the American southwest during summertime. The timing of deglacial events in the Gulf of Mexico and the Gulf of California supports such an atmospheric teleconnection.