971 resultados para Plants, Effect of ethylene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document summarizes the activities that were accomplished in 2008, the sixth year of the research project “Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow”, a collaborative effort among the US Army Corps of Engineers, Everglades National Park, Florida International University, and the US Geological Survey (Florida Integrated Science Center). The major activities in 2008 included field work, data analysis, and presentations. Jay Sah presented the results of 6th year field work at the Cape Sable seaside sparrow (CSSS) Fire Meeting 2008, held on December 2-3 at the Krome Center, Homestead, Florida. In the same meeting, Mike Ross presented results from a related USFWS-funded project on encroachment pattern of woody plants in Cape Sable seaside sparrow habitat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthesis is crucial for life but is a slow process because the CO2 concentration near the principal carbon-assimilation enzyme RuBisCO is extremely low. Very few plants and algae perform a carbon-concentrating mechanism (CCM) to overcome the insufficiency, which are classified into biophysical and biochemical (C4) mechanism. The enzyme CA catalyzes the reversible dehydration of HCO3- to CO2 in biophysical CCMs and its active site contains a Zn2+. In this study, we hypothesized that Zn2+ availability can impact CCMs and therefore investigated the effect of Zn2+ availability on photosynthetic metabolism in a unicellular marine diatom Phaeodactylum tricornutum. P. tricornutum has a sequenced genome and can conduct both biophysical and C4 CCMs. We observed that Zn2+ has a significant effect on cell growth rate but no significant interference on intracellular metabolism, suggesting no essential compensation of C4 CCMs for biophysical CCMs even at low CA activity anticipated at low Zn2+ concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management of coconut ( Cocos nucifera ) lethal yellowing disease (CLYD), which has killed about eight million coconut trees in Mozambique, has proved challenging. The objective of this study was to investigate the impact of farming practices and related history, on the CLYD incidence in Mozambique. The methodology included a socioeconomic questionnaire to the households and direct observations on the palm farms. The collected data were analysed using logistic regression. Five out of 11 explanatory variables tested, namely farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices, and intercropping had a significant (P< 0.05) effect on CLYD incidence. Coconut farms <10 years had higher odds of higher disease incidence compared to the farms between 10 to 40 years old. The presence of other palm species in the coconut farms had two times higher odds of having higher disease incidence levels compared to farms without other palm species. Tall coconut varieties were likely to be more tolerant to CLYD compared to dwarf varieties. Coconut farms with some kind of intercropping had two times higher odds of having higher disease incidence levels compared to pure stands. The practice of cutting coconut roots had three times higher odds of having high disease incidence levels compared to non-practicing farms. Farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices and intercropping need to be considered for integrated CLYD management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the response of the Champaka pineapple to inoculation with the diazotrophic bacterium Asaia bogorensis (strain 219) when grown with organic fertilizer in an irrigated sapota orchard. Plantlets were transplanted to tubes containing a mixture of worm compost and vermiculite and inoculated with 108 bacterial cells. After five and a half months of acclimatization the plantlets were transplanted in furrows in the sapota orchard. Fertilizer was placed at the bottom of the furrows and covered with three doses (2.5; 5.0 and 7.5 L linear m−1 row) of three organic composts. The successful association of the plantlets with the diazo-trophic bacterium was confirmed by most probable number analysis before transferring to the field. Plants inoculated with strain AB219 showed the greatest initial leaf growth and produced the heaviest fruits compared to uninoculated plants. Plant growth and fruit yield increased with increasing compost dosages. The results suggested that Champaka pineapple benefited from the association of A. bogorensis (strain 219) when grown under irrigation and with organic fertilizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation plays a fundamental role in soil conservation, so it is common to consider an increase in vegetation cover as one of the techniques to mitigate the effects of desertification in Mediterranean forest environments. There are two factors limiting the establishment and growth of seedlings in dry environments: (i) an excessive radiation and, (ii) the limited availability of water during the summer drought. During an afforestation plan, soil preparation is always necessary to reduce sapling mortality. The goal of this study was to analyze the effect of various organic amendments on soil according to chemical and hydrological properties, and to assess the effects of these parameters on an afforestal proposal under Mediterranean climate conditions. Five amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); sheep manure (SH) and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha -1 . Under bare soil conditions (C), most of mortalities occurred during the summer period of the first year. A substantial positive effect of SM, PM and HP on the survival rates have been clearly observed. Conversely, when the soil was amended with SH, the survival rate quickly decreased or remained more or less constant regarding to C. In this study, the lack of differences on chemical properties indicates that there may exist other reasons to justify the differences that were found in the pattern of vegetation. However, regarding to the hydrological properties some differences have been found. In C, soils were registered below the wilting point during 4 months a year, and therefore, in the area of water unusable by plants. These months were coinciding with the summer Mediterranean drought and can justify the high mortality found on plants. Conversely, in SM, PM and HP, soil moisture remained below the wilting point less period than C and, the plant available water was also higher. In these treatments, the survival sapling rates measured were the highest. SH showed water holding capacity slightly more limited than C. For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the PM, SM and HP have been proved as a significant method to reduce sapling mortality rates during the Mediterranean summer drought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report on a simple and cost effective approach for the development of light-weight, super-tough and stiff material for automotive applications. Nanocomposites based on PP/PS blend and exfoliated graphene nanoplatelets (xGnP) were prepared with and without SEBS. Mechanical, crystallization and thermal degradation properties were determined and correlated with phase morphology. The addition of xGnP to PP/PS blend increased the tensile modulus at the expense of toughness. The presence of xGnP increased the enthalpy of crystallization and enthalpy of fusion of PP in the blends, without affecting segmental mobility and thermal stability. Addition of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) improved the toughness of PP/PS blends, but decreased the stiffness. The incorporation of xGnP into this ternary blend generated a super-tough material with improved stiffness and tensile elongation, suitable for automotive applications. It is observed that the presence of SEBS diminished the tendency of agglomeration of xGnP and their unfavorable interactions with thermoplastics, which in turn reduced the internal friction in the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fact that most of the large scale solar PV plants are built in arid and semi-arid areas where land availability and solar radiation is high, it is expected the performance of the PV plants in such locations will be affected significantly due to high cell temperature as well as due to soiling. Therefore, it is essential to study how the different PV module technologies will perform in such geographical locations to ensure a consistent and reliable power delivery over the lifetime of the PV power plants. As soiling is strongly dependent on the climatic conditions of a particular location a test station, consisted of about 24 PV modules and a well-equipped weather station, was built within the fences of Scatec’s 75 MW Kalkbult solar PV plant in South Africa. This study was performed to a better understand the effect of soiling by comparing the relative power generation by the cleaned modules to the un-cleaned modules. Such knowledge can enable more quantitative evaluations of the cleaning strategies that are going to be implemented in bigger solar PV power plants. The data collected and recorded from the test station has been analyzed at IFE, Norway using a MatLab script written for this thesis project. This thesis work has been done at IFE, Norway in collaboration with Stellenbosch University in South Africa and Scatec Solar a Norwegian independent power producer company. Generally for the polycrystalline modules it is found that the average temperature corrected efficiency during the period of the experiment has been 15.00±0.08 % and for the thin film-CdTe with ARC is 11.52% and for the thin film without ARC is about 11.13% with standard uncertainty of ±0.01 %. Besides, by comparing the initial relative average efficiency of the polycrystalline-Si modules when all the modules have been cleaned for the first time and the final relative efficiency; after the last cleaning schedule which is when all the reference modules E, F, G, and H have been cleaned for the last time it is found that poly3 performs 2 % and 3 % better than poly1 and poly16 respectively, poly13 performs 1 % better than poly15 as well as poly5 and poly12 performs 1 % and 2 % better than poly10 respectively. Besides, poly5 and poly12 performs a 9 % and 11 % better than poly7. Furthermore, there is no change in performance between poly6 and poly9 as well as poly4 and poly15. However, the increase in performance of poly3 to poly1, poly13 to poly15 as well as poly5 and poly12 to poly10 is insignificant. In addition, it is found that TF22 perform 7% better than the reference un-cleaned module TF24 and similarly; TF21 performs 7% higher than TF23. Furthermore, modules with ARC glass (TF17, TF18, TF19, and TF20) shows that cleaning the modules with only distilled water (TF19) or dry-cleaned after cleaned with distilled water(TF20) decreases the performance of the modules by 5 % and 4 % comparing to its respective reference uncleanedmodules TF17 and TF18 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the semi-arid region of northeastern Brazil, the Atriplex plant genus has been efficient in removing salts from soils irrigated with saline wastewater. However, this removal might not be significant compared with the amount of salts added to the soil by the wastewater irrigation. Considering this aspect, the aim of this work was to evaluate the effectiveness of Atriplex nummularia Lindl plants in the remediation of a soil submitted to saline wastewater irrigation. Despite the known inhibition effect of saline wastewater on soil enzyme activity, the cultivation of Atriplex nummularia Lindl maintained the treated soil enzyme activity levels similar to the ones found in natural soils.