984 resultados para Plant-soil relationships


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several suction–water-content (s-w) calibrations for the filter paper method (FPM) used for soil-suction measurement have been published. Most of the calibrations involve a bilinear function (i.e., two different equations) with an inflection point occurring at 60 kPa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sludge provides valuable nutrients to soil. Application of sludge to land is subject to a number of limitations. Its use as a soil conditioner represents a "beneficial reuse option". Primary and secondary sludge from Dublin city is treated in Ringsend treatment plant where it undergoes thermal drying. This study investigates the feasibility of land application of thermally dried biosolids (TDB) from Ringsend treatment plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis details the findings of a study relating the transfer of 238U, 228Ra (232Th), 226Ra, and 137Cs from soil to vegetation in an Atlantic blanket bog, upland blanket bog and semi-natural grassland situated along the north-west coast of Ireland. The results of this study provide information on the uptake of these radionuclides by the indigenous vegetation found present in these ecosystems. The ecosystems chosen are internationally recognizable ecosystems and provide a wide variety of vegetation species and contrasting soil physiochemical properties which allow the influence of these parameters on radionuclide uptake to be assessed. The levels of radionuclides in the soil and vegetation were measured using gamma spectrometry, alpha spectrometry and ICP-MS. The nutrient status of the vegetation and soil physiochemical properties were measured using atomic absorption, flame photometry and other analytical techniques. The results of the study indicate that the uptake of 238U and 228Ra (232Th) by vegetation from all three ecosystems was negligible as the levels in all vegetation was below the limits of detection for the methods used in this study. These results appear to indicate that the vegetation studied do not possess the ability to accumulate significant levels of these radionuclides however this assumption cannot be upheld in the case of the Atlantic blanket bog as the levels in the soil of this ecosystem were too low for detection. Similar results were obtained for 226Ra uptake in both the Atlantic blanket bog and grassland for all vegetation with the exception of H. lanatus from the grassland ecosystem. Radium-226 uptake in upland blanket bog was higher and was detectable in the majority of vegetation indigenous to this ecosystem. Transfer factor values ranged from 0.07 to 2.35 and the TF values for E. tetralix were significantly higher than all other vegetation studied. This species of heather demonstrated the ability to accumulate 226Ra to a greater extent than all other vegetation. The uptake of 226Ra by upland blanket bog vegetation appears to be significantly influenced by a range of soil physiochemical properties. The nutrient status of the vegetation, in particular the calcium content in the vegetation appears to have a negative impact on the uptake of this radionuclide. Potassium-40 was detectable in all vegetation present in the three ecosystems and the levels in the grassland soil were significantly higher than the levels in both bogland soils. Transfer factor values for Atlantic blanket bog vegetation ranged from 0.9 to 13 .8 and were significantly higher in E. vaginatum in comparison to C. vulgaris. Potassium-40 TF values for upland blanket bog vegetation on average ranged from 1.4 for C. vulgaris (stems) to 5.2 for E. vaginatum and were statistically similar for all species of vegetation. Transfer factor values for grassland vegetation ranged from 0.7 to 3.8 and were also statistically similar for all species of vegetation indicating that the transfer of 40K to vegetation within the upland bog and grassland ecosystem is not dependent on plant species. Comparisons of 40K TF values for all three ecosystems indicate that the uptake in E. vaginatum from the Atlantic blanket bog was statistically higher than all other vegetation studied. This appears to indicate that E. vaginatum has the ability to accumulate 40K, however, this species of vegetation was also present in the upland blanket and did not demonstrate the same behaviour. The uptake of 40K by vegetation from all three ecosystems was significantly affected by a range of soil physiochemical properties and in some cases the results were contradictory in nature possibly indicating that the affect of these parameters on 40K uptake is species dependent. The most obvious trend in the data was the influence of soil CEC and magnesium levels in vegetation on 40K TF values. A positive correlation was apparent between the CEC of the soil and 40K uptake in vegetation from both the Atlantic blanket bog and grassland ecosystem. A similar trend was apparent between magnesium levels in vegetation and 40K TF values for the upland blanket bog and grassland vegetation. Caesium-13 7 levels were found to be significantly higher in the two bogland soils in comparison to the grassland soil and levels of 137Cs decreased with increasing soil depth. Transfer factor values for Atlantic blanket bog vegetation ranged from 1.9 to 9.6 and TF values were significantly higher in the leaves o f C. vulgaris in comparison to all other vegetation from this ecosystem. Caesium-13 7 TF values for the upland blanket bog vegetation on average ranged from 0.29 for E. tetralix to 1.6 for C. vulgaris. Uptake by the leaves of C. vulgaris was significantly higher than all other vegetation present thereby supporting the trend found within the Atlantic blanket bog vegetation. These results appear to indicate that the leaves of C. vulgaris have the ability to accumulate significant quantities of 137Cs and also that the uptake of 137Cs by this vegetation is dependent on plant compartment as the stems of this vegetation contained significantly lower levels than the leaves in both ecosystems. The uptake of 137Cs by grassland vegetation was very low and was only detectable in a fraction of the vegetation sampled. Caesium-137 TF values for grassland vegetation were in general lower than 0.02. The impact of soil physiochemical properties and nutrient status of vegetation on 137Cs uptake by vegetation appears to be complex and in some cases contradictory. The most apparent trend in the data was the positive influence of vegetation nutrients on 137Cs uptake in particular the magnesium levels present in the vegetation and to a lesser extent the calcium levels present. The results in general indicate that the uptake of 226Ra, 40K and 137Cs by the chosen vegetation is varied and complex and is significantly dependent on the species of vegetation, soil radionuclide concentration, soil physiochemical properties and the nutrient status of the vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aughinish Alumina Limited (AAL) have an obligation by terms of their Integrated Pollution Control Licence (IPCL) and Planning Permission to establish vegetation on the red mud stack at their plant at Aughinish, Co. Limerick. High pH and high exchangeable sodium percentage are the main known factors limiting the establishment of vegetation on red mud. Gypsum addition has been known to assist in alleviating these problems in other countries. However, there is no experience or published information on red mud rehabilitation under Irish conditions. Red mud with organic and inorganic waste-derived ameliorants as well as selected grassland species were examined under laboratory controlled environment conditions as well as in field plot trials. Also, in order that it would be economically achievable, the research utilised locally available waste products as the organic amendments. Screening trials found that physical constraints severely limit plant germination and growth in red mud. Gypsum addition effectively lowers pH, exchangeable sodium percentage and the availability of A1 and Fe in the mud. A strong relationship between pH, ESP and A1 levels was also found. Gypsum addition increased germination percentages and plant growth for all species investigated. Greenhouse trials demonstrated that organic wastes alone did not greatly improve conditions for plant growth but when used in conjunction with gypsum plant performances for all species investigated was significantly increased. There was a high mortality rate for grasses in non-gypsum treatments. An emerging trend of preferential iron uptake and calcium deficiency in non-gypsum treatments was found at pot screening stage. Species also displayed manganese and magnesium deficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper is a simple introduction to the ecological requirements of Cephaelis ipecacuanha and only a few preliminary conclusions are reached. Cephaelis ipecacuanha has the habit of a forest plant, which is closely connected with the meteorological and floristic factors. This makes it very necessary to study its ecolo-gical relationships carefully, so as to understand its productivity in accordance with its mi¬croclimatic and microedaphic reactions. Conclusions: 1 — Within the ecological range of Cephaelis ipecacuanha, some zones show more fa¬vourable phytosociological conditions than other zones. Consequently, the vegetative and biological types must be investigated in different associations. a — The most favourable vegetative and biological types encountered, in regard to the phytosociological characteristcs of Cephaelis ipecacuanha, were found respectively in the rain forest on the slopes of the Serra dos Parecis and in the serclimax of the river Galera and its tributaries. b — The phytosociological optimum of Cephaelis ipecacuanha was seen in the Vochysietum (Vochysia sp.) which corresponds to number 11 of the original text. It can be defined as follows: shading by vegetation approximately 90%, as the herbaceous sinusium covers 90% of the area worked in, though the arboreal and arbustive coverture is only 65% and 60% respectviely. The inclination is pratically nil (less than 5°) but the drainage is good because the soil is deep and silicous-humous, thus facilitating infiltration by the rain water which inundates the ground temporarily during the periods of floods. The pH oscillates between 5 and 6, denoting a slightly acid soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of Participant 4 were: - Establishment and maintenance of a representative collection of AM fungal species in vivo on trap plant cultures. - Study of the effects of early mycorrhizal inoculation in the growth and health of in vitro plantlets and their subsequent behaviour in the nursery. - Effect of the mycorrhization of in vitro produced bananas and plantains on plant growth and health, under biotic stress conditions (nematode and fungi)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.