968 resultados para Plant Communities


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Members of the oomycete cause extensive losses in agriculture and widespread degradation in natural plant communities, being responsible for the death of thousands of trees every year. Two of the representative species are Phytophthora infestans, which causes late blight of potato, and Phytophthora cinnamomi, which causes chestnut ink disease, responsible for losses on sweet chestnut production in Europe. Genome sequencing efforts have been focused on the study of three species: P. infestans, P. sojae and P. ramorum. Phytophthora infestans has been developed as the model specie for the genus, possessing excellent genetic and genomics resources including genetic maps, BAC libraries, and EST sequences. Our research team is trying to sequence the genome of P. cinnamomi in order to gain a better understanding of this oomycete, to study changes in plant-pathogen relationships including those resulting from climate change and trying to decrease the pathogen’s impact on crops and plants in natural ecosystems worldwide. We present here a preliminary report of partially sequenced genomic DNA from P. cinnamomi encoding putative protein-coding sequences and tRNAs. Database analysis reveals the presence of genes conserved in oomycetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earth climate has changed significantly in the last century and the different models indicate that it will continue to change over the next decades, even if the emission of greenhouse gases stop immediately. These changes have impact on different plant populations, as well as in the actual distribution of several species. As plants, in general, have a smaller capacity of dispersion compared with the animals it is likely that they will suffer the impacts of the climate change more intensively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent decades the importance of structuring sciences such as botany or phytosociology faced a declining attention from the scientific community. This was accompanied by a growing interest in theoretical ecology. For such scenario greatly contributed an hypothetical exhaustion of research topics in these areas, but especially the introduction of new technologies that have provided powerful tools for data analysis. This allowed, for example, to make predictions about the impacts of climate change on species and plant communities and the consequent recognition of theoretical ecology, as one of the most prestigious pieces of current biological sciences. However, theoretical ecology has been facing serious knoledge gaps that greatly compromise their results, putting again the spotligth on structuring sciences. For example there are enourmous gaps in knowledge and data on dispersal, species and communities chorology and abundace, as well as in biological interactions. These data is essential, since they will determine ecological behavior of species. Its omission always limits the understanding and proper execution of the models generated by theoretical ecology. In this conference we will present a review on the gaps in knowledge and data in flora and vegetation fields in order to identify situations where geobotanical knowledge can make their major contribution. Furthermore, we will emphasize the need to reformulate objectives in geobotanical sciences in order to give it the deserved scientific recognition, considering the relationship between different scientific knowledges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vegetation series, defined as the sequence of stages in a sucession, and know as sigmetum (synassociation), describes the set of plant communities or stages that can be found in similar tesselar spaces as a result of the sucession process. This establishes the concept of vegetation series; a climatophilous series is one that depends on the climate, whereas an edaphoxerophilous series depends on the dryness of the soil, and is found on crests, spurs, ledges and limestone and siliceous rock fields. Edaphohygrophilous series are located in valleys, dry water courses and river terraces, and depend on the water present in the soil, which may become temporarily flooded and thus condition the temporihygrophilous series; they represent the transition between the clearly edaphohygrophilous and climatophilous series. The vegetation permaseries represents the perennial communities of permatesselae or similar permatesselar complexes, as occurs in polar territories, hyperdesert, high-mountain peaks, and non-stratified communities lacking in serial communities. The edaphoxerophilous series may include -in addition to the series head- permaseries (permanent communities) and other habitats, such as annual and crevice habitats. A territory behaves undergoes soil-loss phenomena it may become an edaphoseries, if the loss of the soil factor produces a situation of rocky crest. Thus the edaphoseries may act as dynamic transitional stage between the climatophilous series and the permaseries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As espécies invasoras são uma das principais ameaças à biodiversidade causando impactes ecológicos, económicos e nos serviços dos ecossistemas. O conhecimento conjunto da dinâmica das séries de vegetação e da ecologia das plantas invasoras é uma ferramenta útil na recuperação ecológica de áreas invadidas e na prevenção de invasões. Este trabalho tem como objectivo principal averiguar a relação entre a distribuição das plantas invasoras e as comunidades vegetais terrestres do Sul de Portugal. Para tal, fez-se corresponder a distribuição de nove plantas invasoras selecionadas com as séries de vegetação e territórios biogeográficos, em 60 quadrículas com 1 Km2. A Província Lusitana-Andaluza Costeira revelou-se a mais invadida, com predomínio de Acacia dealbata, Acacia longifolia e Opuntia maxima no potencial climatófilo de sobreiral psamófilo; A. longifolia dominou no potencial edafoxerófilo de zimbral de Juniperus turbinata e A. dealbata e Arundo donax no potencial edafo-higrófilo de freixial. Com base nos resultados, estabeleceram-se áreas prioritárias para intervenção; INVASIVE PLANTS IN SOUTHERN PORTUGAL A BIOGEOGRAPHICAL APPROACH Abstract: Invasive species are one of the main threats to biodiversity worldwide and are responsible for negative impacts at ecological, economic and ecosystem services level. Complementarity between vegetation series dynamics and invasive plants ecology knowledge is essential to address ecological restoration and to prevent invasions. The main goal of this work is to investigate the relationship between invasive plants distribution and terrestrial plant communities of Southern Portugal. Fieldwork was conducted in 60 1 Km2 sampling plots and a correspondence was made between nine selected invasive plants and the vegetation series and the biogegraphic units The Andalusian-Lusitanian Coastal province was the most invaded biogeographic unit and revealed the dominance of Acacia dealbata, Acacia longifolia and Opuntia maxima in the cork oak psammophilous series; A. longifolia dominated in the maritime turbinate juniper edapho-xerophilous series and A. dealbata and Arundo donax in the ash edaphohygrophilous groves potential. Based on the results, priority areas for intervention were defined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the effect of different plant architecture types on epiphytic macroinvertebrates of a shallow macrophyte-dominated lake in China. Macroinvertebrates were sampled from four dominant submersed macrophytes in the lake - two dissected plants (Myriophyllum spicatum L. and Ceratophyllum demersum L.) and two undissected plants (Potamogeton maackianus A. Benn. and Vallisneria spiralis L.). Macro invertebrate richness showed significant differences among four submersed macrophyte habitats, and higher density per g of dry plant were associated with dissected plants than undissected plants. The average abundance in dissected plants was as three-six times as in undissected plants. The biodiversity of epiphytic macroinvertebrates was higher in dissected plants than undissected plants. Our results suggest that dissected plants provide different habitat for macroinvertebrates than dissected plant, and this concurs with the hypothesis that the former could support more epiphytic macroinvertebrates than the latter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Globally, plant-pollinator communities are subject to a diverse array of perturbations and in many temperate and semi-arid systems fire is a dominant structuring force. We present a novel and highly integrated approach, which quantifies, in parallel, the response to fire of pollinator communities, floral communities and floral reward structure. Mt Carmel, Israel is a recognised bee-flower biodiversity hotspot, and using a chronosequence of habitats with differing post-fire ages, we follow the changes in plant-pollinator community organisation from immediately following a burn until full regeneration of vegetation. Initially, fire has a catastrophic effect on these communities, however, recovery is rapid with a peak in diversity of both flowers and bees in the first 2 years post-fire, followed by a steady decline over the next 50 years. The regeneration of floral communities is closely matched by that of their principal pollinators. At the community level we quantify, per unit area of habitat, key parameters of nectar and pollen forage known to be of importance in structuring pollinator communities. Nectar Volume, nectar water content, nectar concentration and the diversity of nectar foraging niches are all greatest immediately following fire with a steady decrease as regeneration proceeds. Temporal changes in energy availability for nectar, pollen, total energy (nectar + pollen) and relative importance of pollen to nectar energy show a similar general decline with site age, however, the pattern is less clear owing to the highly patchy distribution of floral resources. Changes in floral reward structure reflect the general shift from annuals (generally low-reward open access flowers) to perennials (mostly high-reward and restricted access flowers) as post-fire regeneration ensues. The impact of fire on floral communities and their associated rewards have clear implications for pollinator community structure and we discuss this and the role of other disturbance factors on these systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community.