961 resultados para Phylogenetic Analysis
Resumo:
It is currently accepted that Hypsiprymnodon moschatus is a basal macropod, retaining several primitive features from the ancestral phalangeroid that gave rise both to modern possums and macropods. Sperm ultrastructure is frequently found to provide informative characters for phylogenetic analysis as these features are not strongly selected for and are thus unlikely to be confounded by effects such as convergence. Caudal epididymal biopsies were taken from two male H. moschatus and prepared for transmission and scanning electron microscopy in order to study mature spermatozoan ultrastructure. Within the diprotodont group, several features were found to be unique to H. moschatus. These were an unusual acrosome covering nearly 100% of the dorsal nuclear surface, a midpiece fibre network which is loose, indistinct and extends to the anterior-most aspect of the midpiece, a nucleus that is very streamlined, while the principal piece is comparatively short, and a mitochondrial helix and annulus which are similar to those of dasyurids. Also reported is the presence of a fibrous network in die connecting piece, not previously reported for any marsupial.
Resumo:
Partial genome characterisation of a non-cultivable marsupial adenovirus is described. Adenovirus-like particles were found by electron microscopy (EM) in the intestinal contents of brushtail possums (Trichosurus vulpecula) in New Zealand. Using degenerate PCR primers complementary to the most conserved genome regions of adenoviruses, the complete nucleotide sequence of the penton base gene, and partial nucleotide sequences of the DNA polymerase, hexon, and pVII genes were obtained. Phylogenetic analysis of the penton base gene strongly suggested that the brushtail possum adenovirus (candidate PoAdV-1) belongs to the recently proposed genus Atadenovirus. Sequence analysis of the PCR products amplified from the intestinal contents of brushtail possums originating from different geographical regions of New Zealand identified a single genotype. This is the first report of molecular confirmation of an adenovirus in a marsupial.
Resumo:
A radiation of five species of giant tortoises (Cylindraspis ) existed in the southwest Indian Ocean, on the Mascarene islands, and another (of Aldabrachelys ) has been postulated on small islands north of Madagascar, from where at least eight nominal species have been named and up to five have been recently recognized. Of 37 specimens of Madagascan and small-island Aldabrachelys investigated by us, 23 yielded significant portions of a 428-base-pair (bp) fragment of mitochondrial (cytochrome b and tRNA-Glu), including type material of seven nominal species (A. arnoldi, A. dussumieri, A. hololissa, A. daudinii, A. sumierei, A. ponderosa and A. gouffei ). These and nearly all the remaining specimens, including 15 additional captive individuals sequenced previously, show little variation. Thirty-three exhibit no differences and the remainder diverge by only 1-4 bp (0.23-0.93%). This contrasts with more widely accepted tortoise species which show much greater inter- and intraspecific differences. The non-Madagascan material examined may therefore only represent a single species and all specimens may come from Aldabra where the common haplotype is known to occur. The present study provides no evidence against the Madagascan origin for Aldabra tortoises suggested by a previous molecular phylogenetic analysis, the direction of marine currents and phylogeography of other reptiles in the area. Ancient mitochondrial DNA from the extinct subfossil A. grandidieri of Madagascar differs at 25 sites (5.8%) from all other Aldabrachelys samples examined here.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.
Resumo:
Skinks from the genera Eulamprus, Gnypetoscincus and Nangura are a prominent component of the reptile fauna of the mesic forests of the east coast of Australia and have been the subject of numerous ecological studies. Highly conserved morphology and the retention of ancestral traits have limited our understanding of the relationships within and among these genera beyond an initial identification of species groups within Eulamprus. To address this deficit and to explore the relationships between Eulamprus and the monotypic genera Nangura and Gnypetoscincus, sections of two mitochondrial genes (ND4 and 16S rRNA) were sequenced and subjected to Bayesian phylogenetic analysis. This phylogenetic analysis supports recognition of the three species groups proposed for Eulamprus (murrayi, quoyii and tenuis) and indicates that this genus is paraphyletic, with Gnypetoscincus and Nangura being proximal to basal lineages of the tenuis group. To resolve these and broader problems of paraphyly, we suggest that each of the species groups from 'Eulamprus' should be recognised as a distinct genus. The phylogenetically and ecologically distinct water skinks of the quoyii group would be retained within Eulamprus and the diverse species of the tenuis group allocated to Concinnia. We suggest placing the monophyletic murrayi group, endemic to the rainforests of central eastern Australia, in a new genus ( yet to be formally described). The sequencing data also revealed the existence of a genetically divergent but morphologically cryptic lineage within E. murrayi and substantial diversity within E. quoyii. There is evidence for two major habitat shifts from rainforest towards drier habitats, one leading to the quoyii group and the second defining a clade of three species within the tenuis complex. These ecological transitions may represent adaptations to general drying across eastern Australia during the late Miocene - Pliocene. Each of the major areas of east coast tropical or subtropical rainforest contains multiple phylogenetically diverse endemic species, reflecting the long-term persistence and high conservation value of wet forest habitats in each area.
Resumo:
The mite family Stigmaeidae (Acari:Prostigmata) is of considerable importance in biological control, but its genera are often poorly defined and have never been subjected to cladistic analysis. Herein, we report the stigmaeid genus Ledermuelleriopsis Willmann from Australia for the first time, present a preliminary phylogenetic analysis that demonstrates that Eustigmaeus Berlese and Ledermuelleriopsis Willman are distinct, review the genus at the world level, and provide diagnostic characters of the adult females for each of the 21 known species. We also catalogue habitats, distributions and localities of holotypes. Four new species from Australia are described and illustrated: L. parvilla, sp. nov. from old dune sand, L. barbellata, sp. nov. from wet-sandy heath litter, and L. pustulosa, sp. nov. and L. claviseta, sp. nov. from dry eucalypt forest litter. A key to adult females of all known Ledermuelleriopsis species is provided. The Australian species and L. incisa Wood from New Zealand can be separated from all other members of the genus by a synapomorphy: the reduction of the number of setae on the aggenital shield to one pair. Results of a preliminary morphological cladistic analysis for those stigmaeid genera in which the larvae and adults of both sexes are known, indicate that Ledermuelleriopsis is basal to a clade containing Cheylostigmaeus Willman and Eustigmaeus.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.
Resumo:
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.
Resumo:
Applied and Environmental Microbiology, Vol. 73, No.4
Resumo:
Eukaryotic Cell, Vol.8, Nº3
Resumo:
International Biodeterioration & Biodegradation,xxx (2009) 1–8
Resumo:
Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N2-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.