985 resultados para Photographic images
Resumo:
The objective of this work was to evaluate the width and length incidence in a single seed fraction of oat [Avena sativa (L.)] cv. Cristal. The seeds were selected by a mechanical divider and by hand, and their correspondence to radiographic images in seeds with glumes and their caryopses. The width and length of the seeds with glumes and their caryopses were measured with electronic calliper, and their weight, with precision balance. Radiographic images of seeds with glumes were taken with an X-ray experimental equipment. The analyst selected seeds with glumes by the width and by the length previously determined and so with more weight, than that obtained by hand selection was slightly narrower, larger and lighter. The presence of the glumes masked the caryopses real dimensions (width and length), and conduced the analyst to select seeds that differed more by the width than by the length. The radiographic images showed the presence, or not, of caryopses inside the seed and its real dimensions. The mechanical partition method for seeds showed to be more efficient because the analyst subjectivity was not considered when the selection upon its dimensions was done. The X-ray analysis was a useful tool that complements the pure seed fraction selection as another factor of seed quality.
Resumo:
This article presents a global vision of images in forensic science. The proliferation of perspectives on the use of images throughout criminal investigations and the increasing demand for research on this topic seem to demand a forensic science-based analysis. In this study, the definitions of and concepts related to material traces are revisited and applied to images, and a structured approach is used to persuade the scientific community to extend and improve the use of images as traces in criminal investigations. Current research efforts focus on technical issues and evidence assessment. This article provides a sound foundation for rationalising and explaining the processes involved in the production of clues from trace images. For example, the mechanisms through which these visual traces become clues of presence or action are described. An extensive literature review of forensic image analysis emphasises the existing guidelines and knowledge available for answering investigative questions (who, what, where, when and how). However, complementary developments are still necessary to demystify many aspects of image analysis in forensic science, including how to review and select images or use them to reconstruct an event or assist intelligence efforts. The hypothetico-deductive reasoning pathway used to discover unknown elements of an event or crime can also help scientists understand the underlying processes involved in their decision making. An analysis of a single image in an investigative or probative context is used to demonstrate the highly informative potential of images as traces and/or clues. Research efforts should be directed toward formalising the extraction and combination of clues from images. An appropriate methodology is key to expanding the use of images in forensic science.
Resumo:
This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.
Resumo:
A nonlocal variational formulation for interpolating a sparsel sampled image is introduced in this paper. The proposed variational formulation, originally motivated by image inpainting problems, encouragesthe transfer of information between similar image patches, following the paradigm of exemplar-based methods. Contrary to the classical inpaintingproblem, no complete patches are available from the sparse imagesamples, and the patch similarity criterion has to be redefined as here proposed. Initial experimental results with the proposed framework, at very low sampling densities, are very encouraging. We also explore somedepartures from the variational setting, showing a remarkable ability to recover textures at low sampling densities.
Resumo:
Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.
Resumo:
We propose a deep study on tissue modelization andclassification Techniques on T1-weighted MR images. Threeapproaches have been taken into account to perform thisvalidation study. Two of them are based on FiniteGaussian Mixture (FGM) model. The first one consists onlyin pure gaussian distributions (FGM-EM). The second oneuses a different model for partial volume (PV) (FGM-GA).The third one is based on a Hidden Markov Random Field(HMRF) model. All methods have been tested on a DigitalBrain Phantom image considered as the ground truth. Noiseand intensity non-uniformities have been added tosimulate real image conditions. Also the effect of ananisotropic filter is considered. Results demonstratethat methods relying in both intensity and spatialinformation are in general more robust to noise andinhomogeneities. However, in some cases there is nosignificant differences between all presented methods.
Resumo:
The major objective of this work was to evaluate the potential of image analysis for characterizing air voids in Portland cement Concrete (PCC), voids and constituents of Asphalt Concrete (AC) and aggregate gradation in AC. Images for analysis were obtained from a scanning electron microscope (SEM). Sample preparation techniques are presented that enhance signal differences so that backscattered electron (BSE) imaging, which is sensitive to atomic number changes, can be effectively employed. Work with PCC and AC pavement core samples has shown that the low vacuum scanning electron microscope (LVSEM) is better suited towards rapid analyses. The conventional high vacuum SEM can also be used for AC and PCC analyses but some distortion within the sample matrix will occur. Images with improved resolution can be obtained from scanning electron microscope (SEM) backscatter electron (BSE) micrographs. In a BSE image, voids filled with barium sulfate/resin yield excellent contrast in both PCC and AC. There is a good correlation between percent of air by image analysis and linear traverse.
Resumo:
A discussion is presented of daytime sky imaging and techniques that may be applied to the analysis of full-color sky images to infer cloud macrophysical properties. Descriptions of two different types of skyimaging systems developed by the authors are presented, one of which has been developed into a commercially available instrument. Retrievals of fractional sky cover from automated processing methods are compared to human retrievals, both from direct observations and visual analyses of sky images. Although some uncertainty exists in fractional sky cover retrievals from sky images, this uncertainty is no greater than that attached to human observations for the commercially available sky-imager retrievals. Thus, the application of automatic digital image processing techniques on sky images is a useful method to complement, or even replace, traditional human observations of sky cover and, potentially, cloud type. Additionally, the possibilities for inferring other cloud parameters such as cloud brokenness and solar obstruction further enhance the usefulness of sky imagers
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.