927 resultados para Phosphorus Uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mobility of boron (B), a commonly deficient micronutrient in cotton, has been shown to be low in the plant phloem. Nevertheless, studies have indicated that cotton cultivars can respond differently to B application. A greenhouse experiment was conducted to compare B absorption and mobility in cotton cultivars grown in nutrient solution. Treatments consisted of three cotton cultivars (FMT 701, DP 604BG and FMX 993), and five B rates (0.0, 2.5, 5.0, 10.0, and 20.0 µmol L-1). Plant growth and development were monitored for four weeks from the appearance of the first square. The time of onset and severity of B deficiency symptoms varied among cotton cultivars. Initial B uptake of cv. DP 604BG was lower than of the other cultivars, but a greater amount of available B in the nutrient solution was required to prevent deficiency symptoms in this cultivar. Boron deficiency impairs cotton growth, with no differences among cultivars, regardless of the time of appearance and intensity of B deficiency symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of poultry litter are being produced in Brazil, which contain appreciable amounts of phosphorus (P) that could be of environmental concern. To assess the immediate environmental threat, five poultry litters composed of diverse bedding material were incubated for 43 days under greenhouse conditions. The litters consisted of: coffee bean husk (CH); wood chips (WC); rice husk (RH); ground corn cobs (CC) and ground napier grass (NG) (Pennisetum purpureum Schum.), in which the change in forms of soluble P was evaluated using 31P NMR spectroscopy. On average, 80.2 and 19.8 % of the total P in the extract, respectively, accounted for the inorganic and organic forms before incubation and 48 % of the organic P was mineralized to inorganic P in 43 days of incubation. Wide variation in the organic P mineralization rate (from 82 % -WC to 4 % - NG) was observed among litters. Inorganic orthophosphate (99.9 %) and pyrophosphate (0.1 %) were the only inorganic P forms, whereas the organic P forms orthophosphate monoesters (76.3 %) and diester (23.7 %) were detected. Diester P compounds were mineralized almost completely in all litters, except in the CH litter, within the incubation period. Pyrophosphates contributed with less than 0.5% and remained unaltered during the incubation period. Wood-chip litter had a higher organic P (40 %) content and a higher diester: monoester ratio; it was therefore mineralized rapidly, within the first 15 days, achieving steady state by the 29th day. Distinct mineralization patterns were observed in the litter when incubated with a clayey Oxisol. The substantial decrease observed in the organic P fraction (Po) of the litter types followed the order: CH (45 %) > CC (25 %) > RH (13 %) ≈ NG (12 %) > WC (5 %), whereas the Pi fraction increased. Incubation of RH litter in soil slowed down the mineralization of organic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High rates of phosphate fertilizers are applied to potato (Solanum tuberosum L.), which may cause antagonistic interactions with other nutrients and limit crop yields when over-supplied. The purpose of this study was to evaluate the influence of phosphorus (P) levels in nutrient solution on P use efficiency, nutritional status and dry matter (DM) accumulation and partitioning of potato plants cv. Ágata. The experiment was carried out in a greenhouse, arranged in a completely randomized block design with four replications. Treatments consisted of seven P levels in nutrient solution (0, 2, 4, 8, 16, 31, and 48 mg L-1). Plants were harvested after 28 days of growth in nutrient solution, and separated in roots, stems and leaves for evaluations. The treatment effects were analyzed by regression analysis. Phosphorus levels of up to 8 mg L-1 increased the root and shoot DM accumulation, but drastically decreased the root/shoot ratio of potato cv. Ágata. Higher P availability increased P concentration, accumulation and absorption efficiency, but decreased P use efficiency. Higher P levels increased the N, P, Mg, Fe, and Mn concentrations in roots considerably and decreased K, S, Cu, and Zn concentrations. In shoot biomass, N, P, K, and Ca concentrations were significantly increased by P applied in solution, unlike Mg and Cu concentrations. Although higher P levels (> 8 mg L-1) in nutrient solution increased P concentration, accumulation and absorption efficiency, the DM accumulation and partitioning of potato cv. Ágata were not affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm) were collected from a native grassland area and two vineyards, after 14 years (vineyard 1) and 30 years (vineyard 2) of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha-1 year-1 of moist poultry litter; 4) 60 m³ ha-1 year-1 of liquid cattle manure and 5) 40 m³ ha-1 year-1 of liquid swine manure. The 31P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the large number of studies addressing the quantification of phosphorus (P) availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR) and Mixed Resin (MR), to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2) + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV), a sandy clay loam Red Yellow Latosol (LVA), and a sandy loam Yellow Latosol (LA), to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais) at two P rates (75 and 150 mg dm-3), plus three control treatments (each soil without P application) after four contact periods (15, 30, 60, and 120 days) of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction). These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay) and LVA (medium texture) for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of the extractor. For triple superphosphate, both resins extracted higher P levels than Mehlich-1, due to the consumption of this extractor, particularly when used for LV and LVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Ympäristöolosuhteiden vaikutus maan fosforin liukenemiseen pintavalunnan aikana

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vineyards, if phosphate is applied both before planting and at intervals during growth without consideration of technical criteria, the soil P fractions may be increased and their proportions altered. This study was carried out to evaluate the accumulation of P fractions and the parameters of the adsorption isotherm in a sandy Typic Hapludalf soil in vineyards with a history of successive and excessive phosphate fertilization. In December 2010, two vineyards were selected, one 4 and the other 15 years old, in Urussanga, State of Santa Catarina (Brazil). Three trenches were dug in each area and soil was collected from the 0-5, 5-10 and 10-20 cm depth ranges. The soil samples were dried in a forced-air oven, sieved and subjected to chemical analyses, P chemical fractionation and P adsorption isotherms. Excessive phosphate fertilization, before and during cultivation, particularly in the older vineyard and, consequently, with a longer history of phosphate fertilization, increased the inorganic P concentrations to the depth of 20 cm, especially in labile fractions extracted by anion exchange resin and NaHCO3 in the non-labile fraction, as well as in the non-labile fraction extracted by 1.0 mol L-1 HCl. The application of phosphate fertilizers and the long cultivation period increased the P levels in the organic labile fraction extracted by 0.5 mol L-1 NaHCO3, and especially in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH. Phosphate fertilization of older vineyards, i.e., cultivated for 15 years, increased the amounts of P desorbed in water, indicating a risk of contamination of surface waters and groundwater. The phosphate fertilization before planting, without considering the results of soil analysis, and during cultivation, disregarding the results of soil analysis, leaf analysis and expected yield, led to a reduction in the maximum P adsorption capacity in the 0-5 cm layer of vineyard 2, indicating saturation of part of the reactive particle adsorption sites.