956 resultados para Phosphate starvation
Resumo:
Uniform rare earth phosphate (REPO4, RE = La-Tb) nanocrystals were successfully synthesized in a properly designed TBP/[Omim]Cl/H2O (tributylphosphate/1-octyl-3-methyl-imidazolium chloride/water) microemulsion system. The phosphoryl groups anchored the TBP molecules oil the surfaces of the nanocrystals, and this made the nanocrystals easily dispersed in some imidazolium-based ILs. LaPO4:Eu3+ and CePO4:Tb3+ nanocrystals capped with TBP showed bright red and green emission under UV excitation, with enhanced emission intensity and lifetimes compared with the uncapped ones.
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Resumo:
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.
Resumo:
The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.
Resumo:
An organic-inorganic hybrid molybdenum phosphate, Na-2[{Mn(phen)(2)(H2O)} {Mn(phen)(2)}(3){(MnMo12O24)-O-v (HPO4)(6)(PO4)(2) (OH)(6)}] . 4H(2)O (phen=1,10-phenanthroline), involving molybdenum present in V oxidation state and covalently bonded transition metal coordination complexes, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a=16.581(l)Angstrom, b=18.354(1)Angstrom, c=24.485(2)Angstrom, alpha=80.589(l)degrees, beta=71.279(1)degrees, gamma=67.084(1)degrees, V=6493.8(8)Angstrom(3), Z=2, lambda(MoKalpha)=0.71073Angstrom (R(F)=0.0686 for 29,053 reflections). Data were collected on a Bruker Smart Apex CCD diffractometer at 293 K in the range of 1.76 < theta < 28.06degrees using omega-2theta scans technique. The structure of the title compound may be considered to be based on {Mo6O12(HPO4)(3)(PO4)(OH)(3)} units bonded together with {Mn(phen)(2)} subunits into a two-dimensional network. Two types of tunnels are observed in the solid of the title compound.
Resumo:
A new iron hydrogen phosphate, heptairon bis(phosphate) tetrakis(hydrogenphosphate), Fe-7(PO4)(2)(HPO4)(4), has been prepared hydrothermally and characterized by single-crystal X-ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn-7(PO4)(2)(HPO4)(4) and Co-7(PO4)(2)(HPO4)(4). The structure is based on a framework of edge- and corner-sharing FeO6, Fe-5 and PO4 polyhedra, isotypic with that found in the mixed-valence iron phosphate Fe-7(PO4)(6). The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co-7(PO4)(2)(HPO4)(4), the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe-OH-P groups.
Resumo:
Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.
Resumo:
New methylene blue-intercalated a-zirconium phosphate (NMBZrP) was synthesized in the presence of n-butylamine and characterized by powder XRD, FTIR, TEM and elemental analysis. Sub-micron particles of NMBZrP in deionized water were apt to deposit onto the surface of graphite powder to yield graphite powder-supported NMBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing new methylene blue. Cyclic voltammetric studies revealed that peak currents of the NMBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled. at high scan rates. In addition, NMBZrP immobilized in a carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution in the pH range from 0.52 to 3.95.
Resumo:
A chromic molybdenum phosphate, (NH3CH2CH2NH3)(2).(NH3CH2CH2NH2)(3).[NaCr2Mo12O30(PO4)(HPO4)(3)]. 6H(2)O, involving molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction and IR spectrum. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12.067(2), b = 14.677(3), c = 21.290(2) Angstrom, alpha = 80.940(10)degrees, beta = 82.960(10)degrees, gamma = 76.61(2)degrees. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded to a chromic atom, although several P-O groups are not protonated on account of coordination with a Na+ cation. The one-dimensional tunnels were formed in the solid of the title compound. (C) 2000 Elsevier Science B.V. All rights reserved.