988 resultados para Philippines. Legislature. Philippine Assembly
Resumo:
In an attempt to unravel the role of conserved histidine residues in the structure-function of sheep liver cytosolic serine hydroxymethyltransferase (SHMT), three site-specific mutants (H134N, H147N, and H150N) were constructed and expressed, H134N and H147N SHMTs had K-m values for L-serine, L-allo-threonine and beta-phenylserine similar to that of wild type enzyme, although the k(cat) values were markedly decreased, H134N SHMT was obtained in a dimeric form with only 6% of bound pyridoxal 5'-phosphate (PLP) compared with the wild type enzyme, Increasing concentrations of PLP (up to 500 mu M) enhanced the enzyme activity without changing its oligomeric structure, indicating that His-134 may be involved in dimer-dimer interactions, H147N SHMT was obtained in a tetrameric form but with very little PLP (3%) bound to it, suggesting that this residue was probably involved in cofactor binding, Unlike the wild type enzyme, the cofactor could be easily removed by dialysis from H147N SHMT, and the apoenzyme thus formed was present predominantly in the dimeric form, indicating that PLP binding is at the dimer-dimer interface, H150N SHMT was obtained in a tetrameric form with bound PLP, However, the mutant had very little enzyme activity (<2%). The k(cat)/K-m values for L-serine, L-allo-threonine and beta-phenylserine were 80-, 56-, and SS-fold less compared with wild type enzyme, Unlike the wild type enzyme, it failed to form the characteristic quinonoid intermediate and was unable to carry out the exchange of 2-S proton from glycine in the presence of H-4-folate. However, it could form an external aldimine with serine and glycine, The wild type and the mutant enzyme had similar K-d values for serine and glycine, These results suggest that His-150 may be the base that abstracts the alpha-proton of the substrate, leading to formation of the quinonoid intermediate in the reaction catalyzed by SHMT.
Resumo:
The coat protein gene of physalis mottle tymovirus (PhMV) was over expressed in Escherichia coli using pET-3d vector. The recombinant protein was found to self assemble into capsids in vivo. The purified recombinant capsids had an apparent s value of 56.5 S and a diameter of 29(±2) nm. In order to establish the role of amino and carboxy-terminal regions in capsid assembly, two amino-terminal deletions clones lacking the first 11 and 26 amino acid residues and two carboxy-terminal deletions lacking the last five and ten amino acid residues were constructed and overexpressed. The proteins lacking N-terminal 11 (PhCPN1) and 26 (PhCPN2) amino acid residues self assembled into T = 3 capsids in vivo, as evident from electron microscopy, ultracentrifugation and agarose gel electrophoresis. The recombinant, PhCPN1 and PhCPN2 capsids were as stable as the empty capsids formed in vivo and encapsidated a small amount of mRNA. The monoclonal antibody PA3B2, which recognizes the epitope within region 22 to 36, failed to react with PhCPN2 capsids while it recognized the recombinant and PhCPN1 capsids. Disassembly of the capsids upon treatment with urea showed that PhCPN2 capsids were most stable. These results demonstrate that the N-terminal 26 amino acid residues are not essential for T = 3 capsid assembly in PhMV. In contrast, both the proteins lacking the C-terminal five and ten amino acid residues were present only in the insoluble fraction and could not assemble into capsids, suggesting that these residues are crucial for folding and assembly of the particles.
Resumo:
In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5'-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, beta-phenylserine or d-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4x10(-4) s-1 at 50 microM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 microM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 microM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 microM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 degrees C) than that of the wild-type enzyme (56 degrees C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently 'open' form and the increased apparent Tm could be due to enhanced subunit interactions.
Resumo:
Hydrophobins are small surface active proteins that are produced by filamentous fungi. The surface activity of hydrophobin proteins leads to the formation of a film at the air-water interface and adsorption to surfaces. The formation of these hydrophobin films and coatings is important in many stages of fungal development. Furthermore, these properties make hydrophobins interesting for potential use in technical applications. The surfactant-like properties of hydrophobins from Trichoderma reesei were studied at the air-water interface, at solid surfaces, and in solution. The hydrophobin HFBI was observed to spontaneously form a cohesive film on a water drop. The film was imaged using atomic force microscopy from both sides, revealing a monomolecular film with a defined molecular structure. The use of hydrophobins as surface immobilization carriers for enzymes was studied using fusion proteins of HFBI or HFBII and an enzyme. Furthermore, sitespecifically modified variants of HFBI were shown to retain their ability to selfassemble at interfaces and to be able to bind a second layer of proteins by biomolecular recognition. In order to understand the function of hydrophobins at interfaces, an understanding of their overall behavior and self-assembly is needed. HFBI and HFBII were shown to associate in solution into dimers and tetramers in a concentration-dependent manner. The association dynamics and protein-protein interactions of HFBI and HFBII were studied using Förster resonance energy transfer and size exclusion chromatography. It was shown that the surface activity of HFBI is not directly dependent on the formation of multimers in solution.
Resumo:
A new tripodal flexible ligand (L) containing pyrazolyl functionality has been prepared and successfully used to obtain a pd(6) (1) molecular double-square and a cu(3) trigonalbipyramidal cage (2), where complex 1 represents the first example of a double-square obtained using a flexible tripodal ligand.
Resumo:
In this communication, we report the spontaneous and reversible in vitro self-assembly of a polypeptide fragment derived from the C-terminal domain of Insulin-like Growth Factor Binding Protein (IGFBP-2) into soluble nanotubular structures several micrometres long via a mechanism involving inter-molecular disulfide bonds and exhibiting enhanced fluorescence.
Resumo:
Supramolecular ordering of organic semiconductors is the key factor defining their electrical characteristics. Yet, it is extremely difficult to control, particularly at the interface with metal and dielectric surfaces in semiconducting devices. We have explored the growth of n-type semiconducting films based on hydrogen-bonded monoalkylnaphthalenediimide (NDI-R) from solution and through vapor deposition on both conductive and insulating surfaces. We combined scanning tunneling and atomic force microscopies with X-ray diffraction analysis to characterize, at the submolecular level, the evolution of the NDI-R molecular packing in going from monolayers to thin films. On a conducting (graphite) surface, the first monolayer of NDI-R molecules adsorbs in a flat-lying (face-on) geometry, whereas in subsequent layers the molecules pack edge-on in islands (Stranski–Krastanov-like growth). On SiO2, the NDI-R molecules form into islands comprising edge-on packed molecules (Volmer–Weber mode). Under all the explored conditions, self-complementary H bonding of the imide groups dictates the molecular assembly. The measured electron mobility of the resulting films is similar to that of dialkylated NDI molecules without H bonding. The work emphasizes the importance of H bonding interactions for controlling the ordering of organic semiconductors, and demonstrates a connection between on-surface self-assembly and the structural parameters of thin films used in electronic devices.
Resumo:
Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.
Resumo:
Due to their unique size- and shape-dependent physical and chemical properties, highly hierarchically-ordered nanostructures have attracted great attention with a view to application in emerging technologies, such as novel energy generation, harvesting, and storage devices. The question of how to get controllable ensembles of nanostructures, however, still remains a challenge. This concept paper first summarizes and clarifies the concept of the two-step self-assembly approach for the synthesis of hierarchically-ordered nanostructures with complex morphology. Based on the preparation processes, two-step self-assembly can be classified into two typical types, namely, two-step self-assembly with two discontinuous processes and two-step self-assembly completed in one-pot solutions with two continuous processes. Compared to the conventional one-step self-assembly, the two-step self-assembly approach allows the combination of multiple synthetic techniques and the realization of complex nanostructures with hierarchically-ordered multiscale structures. Moreover, this approach also allows the self-assembly of heterostructures or hybrid nanomaterials in a cost-effective way. It is expected that widespread application of two-step self-assembly will give us a new way to fabricate multifunctional nanostructures with deliberately designed architectures. The concept of two-step self-assembly can also be extended to syntheses including more than two chemical/physical reaction steps (multiple-step self-assembly).
Resumo:
Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.
Resumo:
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.
Resumo:
Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.
Resumo:
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.
Resumo:
The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like.
Resumo:
A nanoscale-sized cage with a trigonal prismatic shape is prepared by coordination-driven self-assembly of a predesigned organometallic Pt-3 acceptor with an organic clip-type ligand. This trigonal prism is fluorescent and undergoes efficient fluorescence quenching by nitroaromatics, which are the chemical signatures of many explosives.