997 resultados para Petrology.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has the main aim of defining the lithostratigraphy, depositional architecture, post-depositional modifications and reservoir characteristics of the Cardium Formation in the Ferrier Oilfield, and how these characteristics can have great impact over production rates, GOR and produced fluid discrimination. In the Ferrier area, the Cardium Formation is composed by a NE prograding clastic sequence made up of offshore to shoreface deposits sealed by marine shales. The main reservoir is composed by sandstones and conglomerates interpreted to have deposited in a shoreface depositional environment. Lithofacies and net reservoir thickness mapping led to more detailed understanding of the 3D reservoir architecture, and cross-sections shed light on the Cardium depositional architecture and post-deposition sediment erosion in the Ferrier area. Detailed core logging, thin section, SEM and CL analyses were used to study the mineralogy, texture and pore characterization of the Cardium reservoir, and three main compartments have been identified based on production data and reservoir characteristics. Finally, two situations showing odd production behaviour of the Cardium were resolved. This shed light on the effect of structural features and reservoir quality and thickness over hydrocarbon migration pathways. The Ferrier example offers a unique case of fluid discrimination in clastic reservoirs due both to depositional and post-depositional factors, and could be used as analogue for similar situations in the Western Canadian Sedimentary Basin.