829 resultados para Pervasive games
Resumo:
Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.
Resumo:
This paper analyze and study a pervasive computing system in a mining environment to track people based on RFID (radio frequency identification) technology. In first instance, we explain the RFID fundamentals and the LANDMARC (location identification based on dynamic active RFID calibration) algorithm, then we present the proposed algorithm combining LANDMARC and trilateration technique to collect the coordinates of the people inside the mine, next we generalize a pervasive computing system that can be implemented in mining, and finally we show the results and conclusions.
Resumo:
This paper aims to develop a mathematical model based on semi-group theory, which allows to improve quality of service (QoS), including the reduction of the carbon path, in a pervasive environment of a Mobile Virtual Network Operator (MVNO). This paper generalise an interrelationship Machine to Machine (M2M) mathematical model, based on semi-group theory. This paper demonstrates that using available technology and with a solid mathematical model, is possible to streamline relationships between building agents, to control pervasive spaces so as to reduce the impact in carbon footprint through the reduction of GHG.
Resumo:
This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
We analyze experimental data obtained from an ultimatum game framed as a situation of employee-employer negotiation over salaries. Parallel to this, we elicit subjects' risk attitudes. In the existing literature, it has often been conjectured that gender differences in strategic environments are partly due to differences in risky decision making. Our evidence suggests that both gender and risk-related effects co-exist in ultimatum bargaining. However, differences in risk attitudes cannot explain gender effects in ultimatum bargaining.
Resumo:
We apply experimental methods to study the role of risk aversion on players’ behavior in repeated prisoners’ dilemma games. Faced with quantitatively equal discount factors, the most risk-averse players will choose Nash strategies more often in the presence of uncertainty than when future profits are discounted in a deterministic way. Overall, we find that risk aversion relates negatively with the frequency of collusive outcomes.
Resumo:
Video games constitute a popular form of entertainment that allows millions of people to adopt virtual identities. In our research, we explored the idea that the appeal of games is due in part to their ability to provide players with novel experiences that let them “try on” ideal aspects of their selves that might not find expression in everyday life. We found that video games were most intrinsically motivating and had the greatest influence on emotions when players’ experiences of themselves during play were congruent with players’ conceptions of their ideal selves. Additionally, we found that high levels of immersion in gaming environments, as well as large discrepancies between players’ actual-self and ideal-self characteristics, magnified the link between intrinsic motivation and the experience of ideal-self characteristics during play.
Resumo:
The past few years have seen a significant resurgence of interest in ‘management games’ and ‘management flight simulators’, one particularly active source of such work being the system dynamics community. After proposing a distinction between games and simulations, this paper provides some background to these developments by briefly describing the historical roots of the field and the fundamental ideas of the system dynamics community, which are now giving rise to ‘microworlds’. The training advantages of management simulations and games are then discussed. The paper closes with a note on the research and findings of the system dynamics field and by offering some words of warning on the perils of simulation and game use. Two scenarios for how the use of simulations and games as management education devices might develop in the future are proposed. An Appendix describes five examples of very different types of management simulations and games.
Resumo:
Pervasive healthcare aims to deliver deinstitutionalised healthcare services to patients anytime and anywhere. Pervasive healthcare involves remote data collection through mobile devices and sensor network which the data is usually in large volume, varied formats and high frequency. The nature of big data such as volume, variety, velocity and veracity, together with its analytical capabilities com-plements the delivery of pervasive healthcare. However, there is limited research in intertwining these two domains. Most research focus mainly on the technical context of big data application in the healthcare sector. Little attention has been paid to a strategic role of big data which impacts the quality of healthcare services provision at the organisational level. Therefore, this paper delivers a conceptual view of big data architecture for pervasive healthcare via an intensive literature review to address the aforementioned research problems. This paper provides three major contributions: 1) identifies the research themes of big data and pervasive healthcare, 2) establishes the relationship between research themes, which later composes the big data architecture for pervasive healthcare, and 3) sheds a light on future research, such as semiosis and sense-making, and enables practitioners to implement big data in the pervasive healthcare through the proposed architecture.
Resumo:
We propose a bargaining process supergame over the strategies to play in a non-cooperative game. The agreement reached by players at the end of the bargaining process is the strategy profile that they will play in the original non-cooperative game. We analyze the subgame perfect equilibria of this supergame, and its implications on the original game. We discuss existence, uniqueness, and efficiency of the agreement reachable through this bargaining process. We illustrate the consequences of applying such a process to several common two-player non-cooperative games: the Prisoner’s Dilemma, the Hawk-Dove Game, the Trust Game, and the Ultimatum Game. In each of them, the proposed bargaining process gives rise to Pareto-efficient agreements that are typically different from the Nash equilibrium of the original games.
Resumo:
Background: Health care literature supports the development of accessible interventions that integrate behavioral economics, wearable devices, principles of evidence-based behavior change, and community support. However, there are limited real-world examples of large scale, population-based, member-driven reward platforms. Subsequently, a paucity of outcome data exists and health economic effects remain largely theoretical. To complicate matters, an emerging area of research is defining the role of Superusers, the small percentage of unusually engaged digital health participants who may influence other members. Objective: The objective of this preliminary study is to analyze descriptive data from GOODcoins, a self-guided, free-to-consumer engagement and rewards platform incentivizing walking, running and cycling. Registered members accessed the GOODcoins platform through PCs, tablets or mobile devices, and had the opportunity to sync wearables to track activity. Following registration, members were encouraged to join gamified group challenges and compare their progress with that of others. As members met challenge targets, they were rewarded with GOODcoins, which could be redeemed for planet- or people-friendly products. Methods: Outcome data were obtained from the GOODcoins custom SQL database. The reporting period was December 1, 2014 to May 1, 2015. Descriptive self-report data were analyzed using MySQL and MS Excel. Results: The study period includes data from 1298 users who were connected to an exercise tracking device. Females consisted of 52.6% (n=683) of the study population, 33.7% (n=438) were between the ages of 20-29, and 24.8% (n=322) were between the ages of 30-39. 77.5% (n=1006) of connected and active members met daily-recommended physical activity guidelines of 30 minutes, with a total daily average activity of 107 minutes (95% CI 90, 124). Of all connected and active users, 96.1% (n=1248) listed walking as their primary activity. For members who exchanged GOODcoins, the mean balance was 4,000 (95% CI 3850, 4150) at time of redemption, and 50.4% (n=61) of exchanges were for fitness or outdoor products, while 4.1% (n=5) were for food-related items. Participants were most likely to complete challenges when rewards were between 201-300 GOODcoins. Conclusions: The purpose of this study is to form a baseline for future research. Overall, results indicate that challenges and incentives may be effective for connected and active members, and may play a role in achieving daily-recommended activity guidelines. Registrants were typically younger, walking was the primary activity, and rewards were mainly exchanged for fitness or outdoor products. Remaining to be determined is whether members were already physically active at time of registration and are representative of healthy adherers, or were previously inactive and were incentivized to change their behavior. As challenges are gamified, there is an opportunity to investigate the role of superusers and healthy adherers, impacts on behavioral norms, and how cooperative games and incentives can be leveraged across stratified populations. Study limitations and future research agendas are discussed.