968 resultados para Perturbation (Quantum dynamics)
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model, the dynamics of strangeness (K-0,K-+, Lambda, and Sigma(-,0,+)) production in heavy-ion collisions near threshold energies is investigated systematically, with the strange particles considered to be produced mainly by inelastic collisions of baryon-baryon and pion-baryon. Collisions in the region of suprasaturation densities of the dense baryonic matter formed in heavy-ion collisions dominate the yields of strangeness production. Total multiplicities as functions of incident energies and collision centralities are calculated with the Skyrme parameter SLy6. The excitation function of strangeness production is analyzed and also compared with the KaoS data for K+ production in the reactions C-12 + C-12 and Au-197 + Au-197.
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics model, the dynamics of pion emission in heavy-ion collisions in the region of 1A GeV energies as a probe of nuclear symmetry energy at suprasaturation densities is investigated systematically. The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII and also for the cases of different stiffness of symmetry energy with the parameter SLy6. The influence of Coulomb potential, symmetry energy, and in-medium pion potential on the pion production is investigated and compared to each other by analyzing the distributions of transverse momentum and longitudinal rapidity and also the excitation functions of the total pion and the pi(-)/pi(+) ratio. The directed flow, elliptic flow, and polar-angle distributions are calculated for the cases of different collision centralities and also the various stiffnesses of the symmetry energies. A comparison of the calculations with the available experimental data is performed.
Resumo:
Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4CI+ are examined as a function of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The lifetime of the first singlet excited state S-1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4CI+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over intermediate time delays, which is due to quantum beat effects.
Resumo:
The photodissociation dynamics of the triatomic (or pseudo-triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time-dependent quantum wavepacket method, while the time propagation of the wave packet is carried out using the split-operator scheme. As a numerical example, the photodissociation dynamics of CH,l in three electronic states (1)Q(1)(A'), (1)Q(1)(A"), and (3)Q(0+) is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Vibronic excitations of the tri-atomic molecule OClO (A(2)A(2)(nu(1), nu(2), nu(3)) <-- (XB1)-B-2 (0, 0, 0)) with weak and strong ultra-short laser fields are studied within full quantum wavepacket dynamics in hyperspherical coordinates. Different dynamics is observed following excitation with laser pulses of different intensities. With a strong laser pulse, many vibrational states are excited and a spatially more localised wavepacket arises. The numerical results show that the population of different vibrational states of the wavepacket on the excited potential energy surface is altered by the intensity of the laser pulse. The numerical results also suggest a related effect on the phase of the wavepacket. These interesting phenomena can be understood by an analysis of the corresponding results for two model diatomic molecules. The possible physical mechanisms of control of chemical processes using strong laser fields are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this review, a few examples of state-to-state dynamics studies of both unimolecular and bimolecular reactions using the H-atom Rydberg tagging TOF technique were presented. From the H2O photodissociation at 157 nm, a direction dissociation example is provided, while photodissociation of H2O at 121.6 has provided an excellent dynamical case of complicated, yet direct dissociation process through conical intersections. The studies of the O(D-1) + H-2 --> OH+H reaction has also been reviewed here. A prototype example of state-to-state dynamics of pure insertion chemical reaction is provided. Effect of the reagent rotational excitation and the isotope effect on the dynamics of this reaction have also been investigated. The detailed mechanism for abstraction channel in this reaction has also been closely studied. The experimental investigations of the simplest chemical reaction, the H-3 system, have also been described here. Through extensive collaborations between theory and experiment, the mechanism for forward scattering product at high collision energies for the H+HD reaction was clarified, which is attributed to a slow down mechanism on the top of a quantized barrier transition state. Oscillations in the product quantum state resolved different cross sections have also been observed in the H+D-2 reaction, and were attributed to the interference of adiabatic transition state pathways from detailed theoretical analysis. The results reviewed here clearly show the significant advances we have made in the studies of the state-to-state molecular reaction dynamics.
Resumo:
The theoretical model of collisional quantum interference (CQI) in intramolecular rotational energy transfer is described in an atom-diatom system, based on the first Born approximation of time-dependent perturbation theory and considering a long-range interaction potential. The relation between differential and integral interference angles is obtained. For the CO A(1)Pi (v = 0)/e(3)Sigma (-)(v = 1)-He collision system, the calculated integral interference angles are consistent with the experimental values. The physical significance of interference angle and the essential factors it depends on as well as the influence of the short-range interaction on CQI are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society
Resumo:
De-excited dynamics of p-chlorotoluene and p-dichlorobenzene have been investigated by the femtosecond pump-probe method in a supersonic molecular beam. The yields of the parent ion and daughter ion are examined as a function of the delay time between the pump and probe laser pulses. The lifetime constants of excited p-chlorotoluene and p-dichlorobenzene are determined. Possible de-excitation mechanisms are suggested that the initially excited S-1 state is predissociative via the repulsive triplet state. The substituent effects of additional chlorine atom and methyl group are discussed. Moreover, for the first time, we observe a novel quantum beat oscillation in p-dichlorobenzene. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)
Resumo:
Gough, John, (2004) 'Holevo-Ordering and the Continuous-Time Limit for Open Floquet Dynamics', Letters in Mathematical Physcis 67(3) pp.207-221 RAE2008
Resumo:
Douglas B. Murray, Manfred Beckmann, and Hiroaki Kitano. (2007). Regulation of yeast oscillatory dynamics. Proceedings of the National Academy of Sciences of the USA, 104 (7), 2241-2246 Sponsorship: Solution-Oriented Research for Science and Technology Agency to the Systems Biology Institute /21st Century Center of Excellence Program and Special Coordination Program of the Ministry of Education, Sports, Culture, Science, and Technology to Keio University RAE2008
Resumo:
In this thesis we relate the formal description of various cold atomic systems in the energy eigenbasis, to the observable spatial mode dynamics. Herein the `spatial mode dynamics' refers to the direction of photon emission following the spontaneous emission of an excited fermion in the presence of a same species and spin ideal anisotropic Fermi sea in its internal ground state. Due to the Pauli principle, the presence of the ground state Fermi sea renders the phase space, anisotropic and only partially accessible, thereby a ecting the direction of photon emission following spontaneous emission. The spatial and energetic mode dynamics also refers to the quantum `tunneling' interaction between localised spatial modes, synonymous with double well type potentials. Here we relate the dynamics of the wavefunction in both the energetic and spatial representations. Using this approach we approximate the relationship between the spatial and energetic representations of a wavefunction spanning three spatial and energetic modes. This is extended to a process known as Spatial Adiabatic Passage, which is a technique to transport matter waves between localised spatial modes. This approach allows us to interpret the transport of matter waves as a signature of a geometric phase acquired by the one of the internal energy eigenstates of the system during the cyclical evolution. We further show that this geometric phase may be used to create spatial mode qubit and qutrit states.