915 resultados para Pavements overlays
Resumo:
Roller compacted concrete (RCC) is a zero slump portland cement concrete mixture that has been used since the early 1970's in massive concrete structures. Iowa Highway Research Board project HR-300 was established to determine if this type mix could be used to pave roads on the Iowa road system. Manatt's Inc. of Brooklyn, Iowa agreed to pave an 800 ft. x 22 ft. x 10 in. section of RCC pavement in their Ames construction yard. This report discusses the construction of the test slab and interprets test results conducted during and after construction. It was observed that RCC can be placed with conventional asphalt paving equipment. However, there are several problems with RCC paving which must be resolved before RCC can become a viable paving alternative on Iowa's roadway system.
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. Also, two sections were planed to a uniform cross-section, two pavement thicknesses were placed, and two different concrete mix proportions were used. Bond strength was perceived to be the key to determining an appropriate design procedure for whitetopping. If adequate bond is achieved, a bonded PCC overlay technique can be used for design. Otherwise, an unbonded overlay procedure may be more appropriate. Conclusions are as follows: (1) Bond Strength Differences - Milling increased bond strength versus no milling. Tack coat showed increased bond strength versus no tack coat. Planing, Air Blast and Grouting did not provide noticeable improvements in bond strength; nor did different PCC types or thicknesses affect bond strength significantly. (2) Structure - Structural measurements correlated strongly with the wide variation in pavement thicknesses. They did not provide enough information to determine the strength of bonding or the level of support being provided by the ACC layer. Longitudinal cracking correlated with PCC thicknesses and with planing. (3) Bond Over Time - The bond between PCC and ACC layers is degrading over time in the outside wheel path in all of the sections except tack coat (section 12). The bond strength in the section with tack coat was lower than the others, but remained relatively steady.
Resumo:
The use of non-metallic load transfer and reinforcement devices for concrete highway pavements is a possible alternative to avoid corrosion problems related to the current practice of steel materials. Laboratory and field testing of highway pavement dowel bars, made of both steel and fiber composite materials, and fiber composite tie rods were carried out in this research investigation. Fatigue, static, and dynamic testing was performed on full-scale concrete pavement slabs which were supported by a simulated subgrade and which included a single transverse joint. The bahavior of the full-scale specimens with both steel and fiber composite dowels placed in the test joints was monitored during several million load cycles which simulated truck traffic at a transverse joint. Static bond tests were conducted on fiber composite tie rods to determine the required embedment length. These tests took the form of bending tests which included curvature and shear in the embedment zone and pullout tests which subjected the test specimen to axial tension only. Fiber composite dowel bars were placed at two transverse joints during construction of a new concrete highway pavement in order to evaluate their performance under actual field conditions. Fiber composite tie rods were also placed in the longitudinal joint between the two fiber composite doweled transverse joints.
Resumo:
The Benkelman Beam structural test of flexible pavements was replaced in 1976 by dynamic deflection testing with a model 400 Road Rater. The Road Rater is used to determine structural ratings of flexible pavements. New pavement construction in Iowa has decreased with a corresponding increase of restoration and rehabilitation. A method to determine structural ratings of layered systems and rigid pavements is needed to properly design overlay thickness. The objective of this research was to evaluate the feasibility of using the Road Rater to determine support values of layered systems and rigid pavements. This evaluation was accomplished by correlating the Road Rater with the Federal Highway Administration (FHWA) Thumper, a dynamic deflection testing device. Data were obtained with the Road Rater and Thumper at 411 individual test locations on 39 different structural sections ranging from 10" of PCC pavement and 25" of asphalt pavement to a newly graveled unpaved roadway. A high correlation between a 9000 pound Thumper deflection and the 1185 pound Road Rater deflection was obtained. A Road Rater modification has been completed to provide 2000 pound load inputs. The basin, defined by four sensors spaced at 1 foot intervals, resulting from the 2000 pound loading is being used to develop a graph for determining relative subgrade strengths. Road Rater deflections on rigid pavements are sufficient to support the potential for this technique.
Resumo:
The Iowa Department of Transportation (DOT) is continually improving the pavement management program and striving to reduce maintenance needs. Through a 1979 pavement management study, the Iowa DOT became a participant in a five state Federal Highway Administration (FHWA) study of "Transverse Cracking of Asphalt Pavements". There were numerous conclusions and recommendations but no agreement as to the major factors contributing to transverse cracking or methods of preventing or reducing the occurrence of transverse cracking. The project did focus attention on the problem and generated ideas for research. This project is one of two state funded research projects that were a direct result of the FHWA project. Iowa DOT personnel had been monitoring temperature susceptibility of asphalt cements by the Norman McLeod Modified Penetration Index. Even though there are many variables from one asphalt mix to another, the trend seemed to indicate that the frequency of transverse cracking was highly dependent on the temperature susceptibility. Research project HR-217 "Reducing the Adverse Effects of Transverse Cracking" was initiated to verify the concept. A final report has been published after a four-year evaluation. The crack frequency with the high temperature susceptible asphalt cement was substantially greater than for the low temperature susceptible asphalt cement. An increased asphalt cement content in the asphalt treated base also reduced the crack frequency. This research on prevention of transverse cracking with fabric supports the following conclusions: 1. Engineering fabric does not prevent transverse cracking of asphalt cement concrete. 2. Engineering fabric may retard the occurrence of transverse cracking. 3. Engineering fabric does not contribute significantly to the structural capability of an asphalt concrete pavement.
Resumo:
In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.
Resumo:
The objectives of this research were the collection and evaluation of the data pertaining to the importance of concrete mixing time on air content and distribution, consolidation and workability for pavement construction. American Society for Testing and Materials (ASTM) standard C 94 was used to determine the significance of the mixing time on the consistency of the mix being delivered and placed on grade. Measurements of unit weight, slump, air content, retained coarse aggregate and compressive strength were used to compare the consistency of the mix in the hauling unit at the point of mixing and at the point placement. An analysis of variance was performed on the data collected from the field tests. Results were used to establish the relationship between selected mixing time and the portland cement concrete properties tested. The results were also used to define the effect of testing location (center and side of truck, and on the grade) on the concrete properties. Compressive strength test concepts were used to analyze the hardened concrete pavement strength. Cores were obtained at various locations on each project on or between vibrator locations to evaluate the variance in each sample, between locations, and mixing times. A low-vacuum scanning electron microscope (SEM) was used to study air void parameters in the concrete cores. Combining the data from these analysis thickness measurements and ride in Iowa will provide a foundation for the formulation of a performance based matrix. Analysis of the air voids in the hardened concrete provides a description of the dispersion of the cemtitious materials (specifically flyash) and air void characteristics in the pavement. Air void characteristics measured included size, shape and distribution.
Resumo:
Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.
Resumo:
A significant question is: What role does newly-formed expansive mineral growth play in the premature deterioration of concrete? These minerals (ettringite and brucite) are formed in cement paste as a result of chemical reactions involving cement and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from Iowa concrete highways that showed premature deterioration. Mechanisms involved in deterioration were investigated. A second objective was to investigate whether deicer solutions exacerbate the formation of expansive minerals and concrete deterioration. Magnesium in deicer solutions causes the most severe paste deterioration by forming non-cementitious magnesium silicate hydrate and brucite. Chloride in deicer solutions promotes decalcification of paste and alters ettringite to chloroaluminate. Calcium magnesium acetate (CMA) and magnesium acetate (Mg-acetate) produce the most deleterious effects on concrete, with calcium acetate (Ca-acetate) being much less severe.
Resumo:
The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.
Resumo:
Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadiene prices have fluctuated and significantly increased, leading state highway agencies to search for economically viable alternatives to butadiene based materials. This project reports the recent advances in polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the “B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean oil. These new breeds of biopolymers have elastomeric properties comparable to well-established butadiene-based styrenic BCPs. In this report, two types of biopolymer formulations are evaluated for their ability to modify asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for their rheological properties and performance grade. Blends of asphalt modified with the biopolymers are compared to blends of asphalt modified with two commonly used commercial polymers. The viscoelastic properties of the blends show that biopolymers improve the performance grade of the asphalt to a similar and even greater extent as the commercial SBS polymers. Results shown in this report indicate there is an excellent potential for the future of these biopolymers as economically and environmentally favorable alternatives to their petrochemically-derived analogs.
Resumo:
Iowa has more than 13,000 miles of portland cement concrete (PCC) pavement. Some pavements have performed well for over 50 years, while others have been removed or overlaid due to the premature deterioration of joints and cracks. Some of the premature deterioration is classical D-cracking, which is attributed to a critically saturated aggregate pore system (freeze-thaw damage). However, some of the premature deterioration is related to adverse chemical reactivity involving carbonate coarse aggregate. The objective of this paper is to demonstrate the value of a chemical analysis of carbonate aggregate using X-ray equipment to identify good or poor quality. At least 1.5% dolomite is necessary in a carbonate aggregate to produce a discernible dolomite peak. The shift of the maximum-intensity X-ray diffraction dolomite d-spacing can be used to predict poor performance of a carbonate aggregate in PCC. A limestone aggregate with a low percentage of strontium (less than 0.013) and phosphorus (less than 0.010) would be expected to give good performance in PCC pavement. Poor performance in PCC pavement is expected from limestone aggregates with higher percentages (above 0.05) of strontium.
Resumo:
A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted. The salvaged asphaltic concrete was later crushed and hauled to a plant site where it was combined with virgin materials to resurface the three projects. Only two of the projects were used for performance evaluation as the third project was in an interchange area including ramps and was otherwise too short. It was concluded that recycling was cost effective and a high quality surface can be constructed using recycled asphalt cement concrete.