967 resultados para Pathogenic bacteria.
Resumo:
Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
BACKGROUND Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.
Resumo:
The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.
Resumo:
This book offers unique coverage of all presently known amoeba-resistant microorganisms and their significance in the study of infectious diseases. It highlights the role of free-living amoebae as a widespread evolutionary crib for the development of virulence traits in resistant microbes, including the ability of intracellular bacteria to survive to other phagocytic cells such as human macrophages. The emphasis is on public health risks associated with the presence in drinking water of intra-amoebal bacteria as well as the ecology and pathogenic role of amoebae-resisting bacteria as new emerging human pathogens
Resumo:
Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.
Resumo:
Biogenesis of the flagellum, a motive organelle of many bacterial species, is best understood for members of the Enterobacteriaceae. The flagellum is a heterooligomeric structure that protrudes from the surface of the cell. Its assembly initially involves the synthesis of a dedicated protein export apparatus that subsequently transports other flagellar proteins by a type III mechanism from the cytoplasm to the outer surface of the cell, where oligomerization occurs. In this study, the flagellum export apparatus was shown to function also as a secretion system for the transport of several extracellular proteins in the pathogenic bacterium Yersinia enterocolitica. One of the proteins exported by the flagellar secretion system was the virulence-associated phospholipase, YplA. These results suggest type III protein secretion by the flagellar system may be a general mechanism for the transport of proteins that influence bacterial–host interactions.
Resumo:
Recent advances in studies of bacterial gene expression have brought the realization that cell-to-cell communication and community behavior are critical for successful interactions with higher organisms. Species-specific cell-to-cell communication is involved in successful pathogenic or symbiotic interactions of a variety of bacteria with plant and animal hosts. One type of cell–cell signaling is acyl-homoserine lactone quorum sensing in Gram-negative bacteria. This type of quorum sensing represents a dedicated communication system that enables a given species to sense when it has reached a critical population density in a host, and to respond by activating expression of genes necessary for continued success in the host. Acyl-homoserine lactone signaling in the opportunistic animal and plant pathogen Pseudomonas aeruginosa is a model for the relationships among quorum sensing, pathogenesis, and community behavior. In the P. aeruginosa model, quorum sensing is required for normal biofilm maturation and for virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes that represent potential virulence loci.
Resumo:
We have investigated genetic differences between the closely related pathogenic Neisseria species, Neisseria meningitidis and Neisseria gonorrhoeae, as a novel approach to the elucidation of the genetic basis for their different pathogenicities. N. meningitidis is a major cause of cerebrospinal meningitis, whereas N. gonorrhoeae is the agent of gonorrhoea. The technique of representational difference analysis was adapted to the search for genes present in the meningococcus but absent from the gonococcus. The libraries achieved are comprehensive and specific in that they contain sequences corresponding to the presently identified meningococcus-specific genes (capsule, frp, rotamase, and opc) but lack genes more or less homologous between the two species, e.g., ppk and pilC1. Of 35 randomly chosen clones specific to N. meningitidis, DNA sequence analysis has confirmed that the large majority have no homology with published neisserial sequences. Mapping of the cloned DNA fragments onto the chromosome of N. meningitidis strain Z2491 has revealed a nonrandom distribution of meningococcus-specific sequences. Most of the genetic differences between the meningococcus and gonococcus appear to be clustered in three distinct regions, one of which (region 1) contains the capsule-related genes. Region 3 was found only in strains of serogroup A, whereas region 2 is present in a variety of meningococci belonging to different serogroups. At a time when bacterial genomes are being sequenced, we believe that this technique is a powerful tool for a rapid and directed analysis of the genetic basis of inter- or intraspecific phenotypic variations.
Resumo:
To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.
Resumo:
The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.
Resumo:
Bacteria are minute unicellular organisms present in abundance in air, water, soil and food and in association with the human body. The majority of bacteria are harmless to humans while a few are useful and have been exploited in, for example, the manufacture of dairy products. However, bacteria are also pathogenic and those include some of the most important human infections such as typhoid, syphilis and tuberculosis. A few bacteria are especially important to optometrists because they are associated with ocular disease, either by causing a primary eye infection or because there are ocular complications of a systemic bacterial infection.
Resumo:
Most reef-building corals are known to engage in non-pathogenic symbiosis not only with unicellular dinoflagellates from the genus Symbiodinium, but also with other microscopic organisms such as bacteria, fungi, and viruses. The functional details of these highly complex associations remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and their coral host. Studies have shown that certain bacterial orders associate with specific certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enable both parties to find one another and thus generate the symbiosis. The production of these cues by the symbionts may be the result of environmental stimuli such as elevated ocean temperatures, increased water acidity, and even predation. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP during times of stress. Marine bacteria utilize DMSP as a source of sulfur and carbon. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. This would enable them to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. To test the hypothesis that coral-produced DMSP plays a role in attracting symbiotic bacteria, this study utilized the advent of high-throughput sequencing paired with chemotactic assays to determine the response of coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Chemotaxis assays revealed that some isolates responded positively towards the DMSP compound. This finding adds to existing evidence suggesting that coral-associated pathogens utilize chemotaxis as a host colonization and detection mechanism. Thus the symbiotic bacteria that make up the coral microbiome may also employ this process. Furthermore this study demonstrates that bacterial motility may be a strong contributing factor in the response to the chemotactic cue. Swarming motility may be better suited for bacteria that need to respond to a chemical gradient on the surface of the coral. Therefore the isolates that were able to swarm seemed to respond more strongly to the DMSP.
Resumo:
Most reef-building corals are known to engage in symbiosis not only with unicellular dinoflagellates from the genus, Symbiodinium, but they also sustain highly complex symbiotic associations with other microscopic organisms such as bacteria, fungi, and viruses. The details of these non-pathogenic interactions remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and a variety of coral species representative of differing morphologies. Studies have shown that certain bacterial orders associate specifically with certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enables both parties to find one another and thus creating the symbiosis. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP and its derivatives during times of stress. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. Corals may be able to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. The cause of this attraction may stem from the capability of a variety of marine bacteria to catabolize DMSP into different metabolically significant pathways, which may be necessary for the survival of these mutualistic interactions. To test the hypothesis that coral-produced DMSP play a role in attracting symbiotic bacteria, this study utilized the advent of high-through sequencing paired with bacterial isolation techniques to properly characterize the microbial community in the stony coral Porites astreoides. We conducted DMSP swarming and chemotaxis assays to determine the response of these coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Preliminary data from this study suggests that six out of the ten bacterial isolates are capable of conducting unidirectional motility; these six isolates are also capable of conducting swarming motility in the direction of an increasing DMSP concentration gradient. This would indicate that there is a form of positive chemotaxis on behalf of the bacteria towards the DMSP compound. By obtaining a better understanding of the dynamics that drive the associations between bacterial communities and corals, we can further aid in the protection and conservation processes for corals. Also this study would further elucidate the significance of the DMSP compound in the survival of corals under times of stress.
Resumo:
Most reef-building corals are known to engage in symbiosis not only with unicellular dinoflagellates from the genus, Symbiodinium, but they also sustain highly complex symbiotic associations with other microscopic organisms such as bacteria, fungi, and viruses. The details of these non-pathogenic interactions remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and a variety of coral species representative of differing morphologies. Studies have shown that certain bacterial orders associate specifically with certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enables both parties to find one another and thus creating the symbiosis. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP and its derivatives during times of stress. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. Corals may be able to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. The cause of this attraction may stem from the capability of a variety of marine bacteria to catabolize DMSP into different metabolically significant pathways, which may be necessary for the survival of these mutualistic interactions. To test the hypothesis that coral-produced DMSP play a role in attracting symbiotic bacteria, this study utilized the advent of high-through sequencing paired with bacterial isolation techniques to properly characterize the microbial community in the stony coral Porites astreoides. We conducted DMSP swarming and chemotaxis assays to determine the response of these coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Preliminary data from this study suggests that six out of the ten bacterial isolates are capable of conducting unidirectional motility; these six isolates are also capable of conducting swarming motility in the direction of an increasing DMSP concentration gradient. This would indicate that there is a form of positive chemotaxis on behalf of the bacteria towards the DMSP compound. By obtaining a better understanding of the dynamics that drive the associations between bacterial communities and corals, we can further aid in the protection and conservation processes for corals. Also this study would further elucidate the significance of the DMSP compound in the survival of corals under times of stress.