935 resultados para Particles suspension
Resumo:
Rapid solidification techniques can be used to produce the embedded nanoparticles in a desired matrix. The origin and morphology of these small particles and their transformation behaviour are still not fully understood. In this paper, we discuss the issues involved and present some interesting results in Al-Pb-In and Cu-Fe-Si systems.
Resumo:
We have synthesized specimens of nanometric lead dispersion in a glassy Al-Cu-V matrix by rapid solidification of the corresponding melt. The microstructure has been designed to avoid superconducting percolation due to coupling of the neighboring particles by the proximity effect. Using these specimens, we have determined quantitatively the effect of size of the ultrafine lead particles on the superconducting transition. (C) 1999 American Institute of Physics. [S0003-6951(99)02037-9].
Resumo:
Properties of cast aluminium matrix composites are greatly influenced by the nature of distribution of reinforcing phase in the matrix and matrix microstructural length scales, such as grain size, dendrite arm spacing, size and morphology of secondary matrix phases, etc. Earlier workers have shown that SIC reinforcements can act as heterogeneous nucleation sites for Si during solidification of Al-Si-SiC composites. The present study aims at a quantitative understanding of the effect of SiC reinforcements on secondary matrix phases, namely eutectic Si, during solidification of A356 Al-SiC composites. Effect of volume fraction of SiC particulate on size and shape of eutectic Si has been studied at different cooling rates. Results indicate that an increase in SiC volume fraction leads to a reduction in the size of eutectic Si and also changes its morphology from needle-like to equiaxed. This is attributed to the heterogeneous nucleation of eutectic Si on SiC particles. However, SiC particles are found to have negligible influence on DAS. Under all the solidification conditions studied in the present investigation, SiC particles are found to be rejected by the growing dendrites. (C) 1999 Elsevier Science Ltd. All rights reserved.
The melting and solidification of nanoscale Bi particles embedded in a glassy and crystalline matrix
Resumo:
We report the formation of an amorphous phase in nanosized Pi particles embedded in an Al-based glassy alloy matrix. High-resolution electron microscopy (HREM) has been used to show that the particles contain crystalline and amorphous portions. A depression of the melting point by more than 100 K of the crystalline portion of the Pi particles was found by differential scanning calorimetric studies and by in-situ electron microscopy using a heating stage. The same techniques established the absence of an amorphous phase in the particles when the matrix is crystallized. It is shown that the formation of the amorphous phase and the depression of the melting point cannot be explained by the pressure developed by the volume change during solidification in this constrained system.
Resumo:
Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.
Resumo:
The effect of the inclusion of ceramic particles in polythene material on the response to erosion due to impingement by sand particles at three angles is investigated. It is seen that erosion resistance varies with ceramic inclusions. The work also considers the limitations posed by the system in adopting weight change measurements as a measure to follow erosive wear owing to the softer nature of the matrix material. Consequently, the investigation looks at two other experimental parameter, that can readily be measured to quantify erosion. Of the two approaches. the advantages of following wear through measuring linear dimension of the resulting crater is stressed in this work. The study also highlights the problems associated in assessing the depth of the crater as a parameter to express the extent of erosion owing to the phenomenon of material flow suggested and schematically illustrated in the work. Corroborative evidence for this flow behaviour through scanning electron microscopic studies is presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 <
Resumo:
Nanodispersed lead in metallic and amorphous matrices was synthesized by rapid solidification processing. The optimum microstructure was tailored to avoid percolation of the particles. With these embedded particles it is possible to study quantitatively the effect of size on the superconducting transition temperature by carrying out quantitative microstructural characterization and magnetic measurements. Our results suggest the role of the matrices in enhancement or depression of superconducting transition temperature of lead. The origin of this difference in behavior with respect to different matrices and sizes is discussed.
Resumo:
The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.
Resumo:
Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mössbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.
Resumo:
Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.
Resumo:
The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.