881 resultados para Pare to archived genetic algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623–627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important aspect in manufacturing design is the distribution of geometrical tolerances so that an assembly functions with given probability, while minimising the manufacturing cost. This requires a complex search over a multidimensional domain, much of which leads to infeasible solutions and which can have many local minima. As well, Monte-Carlo methods are often required to determine the probability that the assembly functions as designed. This paper describes a genetic algorithm for carrying out this search and successfully applies it to two specific mechanical designs, enabling comparisons of a new statistical tolerancing design method with existing methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expectation-maximization (EM) algorithm has been of considerable interest in recent years as the basis for various algorithms in application areas of neural networks such as pattern recognition. However, there exists some misconceptions concerning its application to neural networks. In this paper, we clarify these misconceptions and consider how the EM algorithm can be adopted to train multilayer perceptron (MLP) and mixture of experts (ME) networks in applications to multiclass classification. We identify some situations where the application of the EM algorithm to train MLP networks may be of limited value and discuss some ways of handling the difficulties. For ME networks, it is reported in the literature that networks trained by the EM algorithm using iteratively reweighted least squares (IRLS) algorithm in the inner loop of the M-step, often performed poorly in multiclass classification. However, we found that the convergence of the IRLS algorithm is stable and that the log likelihood is monotonic increasing when a learning rate smaller than one is adopted. Also, we propose the use of an expectation-conditional maximization (ECM) algorithm to train ME networks. Its performance is demonstrated to be superior to the IRLS algorithm on some simulated and real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the utility of a stress/coping model in explaining adaptation in two groups of people at-risk for Huntington's Disease (HD): those who have not approached genetic testing services (non-testees) and those who have engaged a testing service (testees). The aims were (1) to compare testees and non-testees on stress/coping variables, (2) to examine relations between adjustment and the stress/coping predictors in the two groups, and (3) to examine relations between the stress/coping variables and testees' satisfaction with their first counselling session. Participants were 44 testees and 40 non-testees who completed questionnaires which measured the stress/coping variables: adjustment (global distress, depression, health anxiety, social and dyadic adjustment), genetic testing concerns, testing context (HD contact, experience, knowledge), appraisal (control, threat, self-efficacy), coping strategies (avoidance, self-blame, wishful thinking, seeking support, problem solving), social support and locus of control. Testees also completed a genetic counselling session satisfaction scale. As expected, non-testees reported lower self-efficacy and control appraisals, higher threat and passive avoidant coping than testees. Overall, results supported the hypothesis that within each group poorer adjustment would be related to higher genetic testing concerns, contact with HD, threat appraisals, passive avoidant coping and external locus of control, and lower levels of positive experiences with HD, social support, internal locus of control, self-efficacy, control appraisals, problem solving, emotional approach and seeking social support coping. Session satisfaction scores were positively correlated with dyadic adjustment, problem solving and positive experience with HD, and inversely related to testing concerns, and threat and control appraisals. Findings support the utility of the stress/coping model in explaining adaptation in people who have decided not to seek genetic testing for HD and those who have decided to engage a genetic testing service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An absence of genetic variance in traits under selection is perhaps the oldest explanation for a limit to evolutionary change, but has also been the most easily dismissed. We review a range of theoretical and empirical results covering single traits to more complex multivariate systems, and show that an absence of genetic variance may be more common than is currently appreciated. From a single-trait perspective, we highlight that it is becoming clear that some trait types do not display significant levels of genetic variation, and we raise the possibility that species with restricted ranges may differ qualitatively from more widespread species in levels of genetic variance in ecologically important traits. A common misconception in many life-history studies is that a lack of genetic variance in single traits, and genetic constraints as a consequence of bivariate genetic correlations, are different causes of selection limits. We detail how interpretations of bivariate patterns are unlikely to demonstrate genetic limits to selection in many cases. We advocate a multivariate definition of genetic constraints that emphasizes the presence (or otherwise) of genetic variance in the multivariate direction of selection. For multitrait systems, recent results using longer term studies of organisms, in which more is understood concerning what traits may be under selection, have indicated that selection may exhaust genetic variance, resulting in a limit to the selection response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model is presented which describes selection in a genetic algorithm (GA) under a stochastic fitness measure and correctly accounts for finite population effects. Although this model describes a number of selection schemes, we only consider Boltzmann selection in detail here as results for this form of selection are particularly transparent when fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be of fundamental importance in this case, as the noise has no effect in the infinite population limit. In the limit of weak selection we show how the effects of any Gaussian noise can be removed by increasing the population size appropriately. The theory is tested on two closely related problems: the one-max problem corrupted by Gaussian noise and generalization in a perceptron with binary weights. The averaged dynamics can be accurately modelled for both problems using a formalism which describes the dynamics of the GA using methods from statistical mechanics. The second problem is a simple example of a learning problem and by considering this problem we show how the accurate characterization of noise in the fitness evaluation may be relevant in machine learning. The training error (negative fitness) is the number of misclassified training examples in a batch and can be considered as a noisy version of the generalization error if an independent batch is used for each evaluation. The noise is due to the finite batch size and in the limit of large problem size and weak selection we show how the effect of this noise can be removed by increasing the population size. This allows the optimal batch size to be determined, which minimizes computation time as well as the total number of training examples required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to rising rates of new product introduction and turbulent demand patterns across product mixes. As a result, manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with market changes, so as to achieve the competitiveness of producing and delivering products to the market timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism to effectively and cost-efficiently integrate the activities associated with production planning and control, so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufacturing systems to accommodate dynamic changes in the market and production. The iterative bidding mechanism is executed based on currency-like metrics; each operation to be performed is assigned with a virtual currency value and agents bid for the operation if they make a virtual profit based on this value. These currency values are optimised iteratively and so does the bidding process based on new sets of values. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation of the mechanism and the test case simulation results are also discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a parallel genetic algorithm for nding matrix multiplication algo-rithms. For 3 x 3 matrices our genetic algorithm successfully discovered algo-rithms requiring 23 multiplications, which are equivalent to the currently best known human-developed algorithms. We also studied the cases with less mul-tiplications and evaluated the suitability of the methods discovered. Although our evolutionary method did not reach the theoretical lower bound it led to an approximate solution for 22 multiplications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Batch-mode reverse osmosis (batch-RO) operation is considered a promising desalination method due to its low energy requirement compared to other RO system arrangements. To improve and predict batch-RO performance, studies on concentration polarization (CP) are carried out. The Kimura-Sourirajan mass-transfer model is applied and validated by experimentation with two different spiral-wound RO elements. Explicit analytical Sherwood correlations are derived based on experimental results. For batch-RO operation, a new genetic algorithm method is developed to estimate the Sherwood correlation parameters, taking into account the effects of variation in operating parameters. Analytical procedures are presented, then the mass transfer coefficient models are developed for different operation processes, i.e., batch-RO and continuous RO. The CP related energy loss in batch-RO operation is quantified based on the resulting relationship between feed flow rates and mass transfer coefficients. It is found that CP increases energy consumption in batch-RO by about 25% compared to the ideal case in which CP is absent. For continuous RO process, the derived Sherwood correlation predicted CP accurately. In addition, we determined the optimum feed flow rate of our batch-RO system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper it is explained how to solve a fully connected N-City travelling salesman problem (TSP) using a genetic algorithm. A crossover operator to use in the simulation of a genetic algorithm (GA) with DNA is presented. The aim of the paper is to follow the path of creating a new computational model based on DNA molecules and genetic operations. This paper solves the problem of exponentially size algorithms in DNA computing by using biological methods and techniques. After individual encoding and fitness evaluation, a protocol of the next step in a GA, crossover, is needed. This paper also shows how to make the GA faster via different populations of possible solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a model of encoding data into DNA strands so that this data can be used in the simulation of a genetic algorithm based on molecular operations. DNA computing is an impressive computational model that needs algorithms to work properly and efficiently. The first problem when trying to apply an algorithm in DNA computing must be how to codify the data that the algorithm will use. In a genetic algorithm the first objective must be to codify the genes, which are the main data. A concrete encoding of the genes in a single DNA strand is presented and we discuss what this codification is suitable for. Previous work on DNA coding defined bond-free languages which several properties assuring the stability of any DNA word of such a language. We prove that a bond-free language is necessary but not sufficient to codify a gene giving the correct codification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel approach for character recognition has been presented with the help of genetic operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic algorithm approach has been described in which the biological haploid chromosomes have been implemented using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of characters are taken as an initial population from which various new generations of characters are generated with the help of selection, crossover and mutation. Variations of population of characters are evolved from which the fittest solution is found by subjecting the various populations to a new fitness function developed. The methodology works and reduces the dissimilarity coefficient found by the fitness function between the character to be recognized and members of the populations and on reaching threshold limit of the error found from dissimilarity, it recognizes the character. As the new population is being generated from the older population, traits are passed on from one generation to another. We present a methodology with the help of which we are able to achieve highly efficient character recognition.