971 resultados para Panel VAR models
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
Nine classes of integrable open boundary conditions, further extending the one-dimensional U-q (gl (212)) extended Hubbard model, have been constructed previously by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary systems are now solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained for all nine cases.
Resumo:
The purpose of this paper is to analyze the dynamics of national saving-investment relationship in order to determine the degree of capital mobility in 12 Latin American countries. The analytically relevant correlation is the short-term one, defined as that between changes in saving and investment. Of special interest is the speed at which variables return to the long run equilibrium relationship, which is interpreted as being negatively related to the degree of capital mobility. The long run correlation, in turn, captures the coefficient implied by the solvency constraint. We find that heterogeneity and cross-section dependence completely change the estimation of the long run coefficient. Besides we obtain a more precise short run coefficient estimate compared to the existent estimates in the literature. There is evidence of an intermediate degree of capital mobility, and the coefficients are extremely stable over time.
Resumo:
This article tests the hypothesis of opportunistic and partisan cycle models using a new large data set of Brazilian municipalities over the 1989-2005 period. The results show an increase in total and current expenditures and a decrease in municipal investments, local tax revenues, and budget surplus in election years. They also show that partisan ideology exerts a relative influence on the performance of the local public accounts. These results confirm that both opportunistic and partisan cycles have occurred in the management of the budgets of Brazilian municipalities after the end of the military government.
Resumo:
Many models exist in the literature to explain the success of technological innovation. However, no studies have been made regarding graphic formats representing the technological innovation models and their impact, or on the understanding of these models by non-specialists in technology management. Thus, the main objective of this paper is to propose a new graphic configuration to represent the technological innovation management. Based on the literature, the innovation model is presented in the traditional format. Next, the same model is designed in the graphic format - named `the see-saw of competitiveness` - showing the interfaces among the identified factors. The two graphic formats were compared by a group of graduate students in terms of the ease in understanding the conceptual model of innovation. The statistical analysis shows that the seesaw of competitiveness is preferred.
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Valuation of projects for the preservation of water resources provides important information to policy makers and funding institutions. Standard contingent valuation models rely on distributional assumptions to provide welfare measures. Deviations from assumed and actual distribution of benefits are important when designing policies in developing countries, where inequality is a concern. This article applies semiparametric methods to obtain estimates of the benefit from a project for the preservation of an important Brazilian river basin. These estimates lead to significant differences from those obtained using the standard parametric approach.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.