944 resultados para Palmeira (Vegetal)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis de la Universidad Central (Madrid), Facultad de Farmacia, leída el 25-11-1862.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis de la Universidad Central (Madrid), Facultad de Farmacia, leída el 25-06-1861.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contiene: v. 3 a 15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.