649 resultados para Paleogene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Toba lake event, the Australasian microtektite event, and the Cretaceous/Paleogene boundary were analyzed on the basis of foraminifers, carbonate content, trace elements, and spherules (microtektites). The Toba ash event, recovered in Hole 758C, may have had minor influences on the foraminiferal populations. The Australasian tektite event has probably some influence on foraminiferal ecology, because the larger specimens become scarce just above the microtektite layer. Microtektites recovered from Hole 758B closely resemble spherules recovered from several Cretaceous/Paleogene boundary localities in North America. The Cretaceous/Paleogene spherules, however, are usually larger and are completely altered to goyazite in the terrestrial environment and to smectite in a marine environment. The Cretaceous/Paleogene boundary of Hole 752B does not show obvious anomalous trace-element concentrations, and iridium concentrations are below our detection limits. The trace-element pattern is dominated by the alternation of chalk with volcanic ash layers above the Cretaceous/Paleogene boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments in the southeast Atlantic sector of the Southern Ocean were cored during Ocean Drilling Program (ODP) Leg 177 to study the paleoceanographic history of the Antarctic region on short (millennial) to long (Cenozoic) timescales. Seven sites were drilled along a north-south transect across the Antarctic Circumpolar Current (ACC) from 41° to 53°S. The general goals of Leg 177 were twofold: (1) to document the biostratigraphic, biogeographic, and paleoceanographic history of the Paleogene and early Neogene, a period marked by the establishment of the Antarctic cryosphere and the ACC, and (2) to target expanded sections of late Neogene sediments, which can be used to resolve the timing of Southern Hemisphere climatic events on orbital and suborbital time scales (Gersonde, Hodell, Blum, et al., 1999, doi:10.2973/odp.proc.ir.177.1999). Closely spaced measurements of sedimentary physical properties were obtained from all cores recovered during Leg 177 using the ODP whole-round multisensor track. In addition, high-resolution diffuse color reflectance and resistivity measurements were collected on the Oregon State University Split Core Analysis Track. These whole-core and split-core measurements provide high-resolution proxy data sets for the estimation of biogenic and terrigenous mineralogy and mass flux. To assist investigators in calibrating these proxy data sets from sites located within the circum-Antarctic opal belt, samples from Sites 1093 (50°S) and 1094 (53°S) were analyzed for biogenic opal content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carried out oxygen and carbon isotope studies on monospecific foraminifer samples from DSDP Sites 522, 523, and 524 of Leg 73 in the central South Atlantic Ocean. The oxygen isotope ratios show a warming of 2 to 3 °C in bottom water and 5°C in surface water during the Paleocene and early Eocene. The carbon isotope values indicate strong upwelling during the early Eocene. The 1% increase in the d18O values of benthic and planktonic foraminifers at Site 523 in the later middle Eocene we ascribe to changes in the pattern of the evaporation and precipitation. The changes may be due to the worldwide Lutetian transgression. The oxygen ratios for the benthic and planktonic foraminifers indicate a cooling at the Eocene/Oligocene transition. The maximum temperature drop (5°C for benthic and 3°C for planktonic foraminifers) is recorded slightly beyond the Eocene/Oligocene boundary and took place over an interval of about 100,000 yr. The pattern of currents in the Southern Hemisphere was mainly structured by a precursor of the subtropical convergence during the Paleocene to late Eocene. The cooling at the Eocene/Oligocene transition led to drastic changes in the circulation pattern, and a precursor of the Antarctic convergence evolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene-Eocene Thermal Maximum (PETM; ~55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event - that we term the Dan-C2 event - is characterized by a conspicuous double negative excursion in delta13C and delta18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETMin the early Paleocene at ~65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~40 ky and are separated by a short plateau that brings the combined duration to ~100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO eventmay reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accumulation of wind blown (eolian) dust in deep-sea sediments reflects the aridity/humidity conditions of the continental region supplying the dust, as well as the "gustiness" of the climate system. Detailed studies of Pleistocene glacial-interglacial dust fluxes suggest changes in accumulation rates corresponding to orbital variations in solar insolation (Milankovitch cycles). While the orbital cycles found in sedimentary archives of the Pleistocene are intricately related to glacial growth and decay, similar global orbital signals recognized in deep-sea sediments of early Paleogene age, the last major greenhouse interval ~65-45 million years ago, could not have been linked to the waxing and waning of large ice sheets. Thus orbital signals recorded in early Paleogene sediments must reflect some other climate response to changes in solar insolation. To explore the potential connection between orbital forcing and the climate processes that control dust accumulation, we generated a high-resolution dust record for ~58 Myr old sediments from Shatsky Rise (ODP Site 1209, paleolatitude ~15°N-20°N). The dust accumulation data provide the first evidence of a correlation between dust flux to the deep sea and orbital cyclicity during the early Paleogene, indicating dust supply responded to insolation forcing during the last major interval of greenhouse climate. Furthermore, the relative amplitude of the dust flux response during the early Paleogene greenhouse was comparable to that during icehouse climates. Thus, subtle variations in solar insolation driven by changes in Earth's orbit about the Sun may have had a similar impact on climate during intervals of overall warmth as they did during glacial-interglacial states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ontong Java Plateau in the western equatorial Pacific contains a deposition record of biserial planktonic foraminifers concentrated in the Paleogene, in which frequencies up to 67% of the planktonic foraminifers are reported, and in the late Neogene, in which a maximum frequency of 48% is reported. Biserial planktonic foraminifers are rare or absent in the latest Oligocene and early Miocene, an interval characterized by warm bottom water and low temperature gradients. These conditions supported a surface assemblage rather than the biserial planktonic foraminifers, whose Neogene species inhabited the oxygen minimum at intermediate depths in the upper water column. Biserial planktonic foraminifers tend to be of high frequency during high sea stands and low frequency during low sea level, presumably in response to the strengthening or weakening of the oxygen minimum. Species extinction and evolution events occur during low sea stands in the Neogene and sometimes correspond to strong reflection horizons of the plateau's seismic stratigraphy. The biserial species are useful biostratigraphic indexes in the plateau section. The last occurrence (LO) of Streptochilus martini corresponds with the Eocene/Oligocene boundary; S. subglobigerum without Neogloboquadrina acostaensis indicates Zone N15; S. latum occurs from the middle of Zone N16 to near the top of Zone N17; S. globigerum ranges from near the top of Zone N17 to the middle of Zone N19/N20; and the S. globulosum continuous range begins just before the first left-to-right coiling change of Pulleniatina, but the species becomes rare in the Pleistocene section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 182 drilled at nine sites on the Great Australian Bight, which is located directly south of the Australian continent. Leg 182 proposed to examine the paleoceanographic evolution of a midlatitude, cool-water carbonate platform. During drilling on the Great Australian Bight, three sites (1127, 1129, and 1131) recovered highly expanded Pleistocene sections. This paper presents the detailed calcareous nannofossil biostratigraphy of the most distal site. This report should provide a useful Pleistocene biostratigraphic reference for this previously unknown area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 199, eight sites (Sites 1215-1222) were cored in the Central Pacific. Late Eocene-early Oligocene thick radiolarian-rich biogenic sediments were collected from Holes 1218A, 1219A, and 1220A. This is the first attempt to calibrate the ages of Paleogene radiolarian events using magnetostratigraphy in this region. A total of 107 species and species groups, which are valuable for stratigraphic correlation, are listed with numeric data and figures. Among these three holes, a total of 77 radiolarian events were recognized and their ages were calibrated by correlation with paleomagnetic events recorded in Hole 1220A.