970 resultados para PRESSURE VOLUMETRIC PROPERTIES
Resumo:
The geotechnical characteristics of 22 sediment samples from Leg 84 sites were studied in an effort to associate these with processes active along the Middle America slope and with sedimentation mechanisms. Geotechnical properties measured include water content, porosity, bulk density, Atterberg limits, consolidation characteristics, permeability, and vane shear strength. A majority of samples obtained from Sites 565, 568, and 570 show significant disturbance resulting from degassing. This disturbance apparently results in underconsolidation, although other mechanisms such as excess pore pressures generated from the subduction process can also contribute to this state. Overconsolidated sediments were found at Sites 565, 566, and 569. The overconsolidated sediments at Sites 565 and 569 may result from downslope transport mechanisms rearranging and stressing the sediment mass under consideration. The sediment condition at Site 566 is probably a result of eroded overburden: an estimated 87 m of overlying sediments may have been removed. Geotechnical and permeability relationships with depth are consistent with those found for other hemipelagic sediments of silty clay to clayey silt textures.
Resumo:
Twenty-seven samples from the Leg 83 section of Hole 504B have been investigated using magnetic, optical, and electron optical methods. The primary magnetic mineral to crystallize was titanomagnetite of approximate composition Fe2.4Ti0.6O4 (TM60), but none survives, nor is there evidence of titanomaghemite produced by oxidation of TM60. The average measured magnetic properties can be interpreted in terms of magnetite, Fe3O4, having average grain size of <1 µm and present in average volume concentration of - 0.5%. The intensity of the natural remanent magnetization (NRM) of the rocks could also be accounted for as being a thermoremanence carried by this mineral. Although the heterogeneity of the titanomagnetite grains could be detected optically, the texture of the intergrown phases is poorly developed. In some samples from the massive units of the lower part of the section, trellis patterns were visible. The Fe3O4 present in the intergrowths is too intimately mixed with the other intergrown phases to be revealed by electron microprobe analysis that simply returns the bulk composition of the intergrowth (oxidized TM60). The path by which the mineral assemblage evolved from TM60 to an Fe304-containing intergrowth, under the temperature and pressure conditions obtaining in the Leg 83 section, makes interesting speculation. Deuteric oxidation, maghemitization/inversion, or some hypothetical low-temperature/high-pressure oxidation by a leaching-of-iron process may all play roles.
Resumo:
A detailed study has been made of the physical properties of core samples from Deep Sea Drilling Project Hole 395A. The properties include: density, porosity, compressional and shear wave velocity, thermal conductivity, thermal diffusivity, and electrical resistivity. Of particular importance are the relations among the parameters. Most of the variations in the basalt properties follow the porosity, with smaller inferred dependence on pore structure, original mineralogy differences, and alteration. The sample measurements give very similar results to (and extend previous data from) Mid-Atlantic Ridge drillholes, the sample data from this site and previous data are used to estimate relations between porosity and other large-scale physical properties of the upper oceanic crust applicable to this area. These relations are important for the analysis and interpretation of downhole logging measurements and marine geophysical data.
Resumo:
Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.
Resumo:
Variations of acoustic properties within the sediment column may significantly affect the propagation of acoustic energy in the upper portion of the oceanic crust. Moreover, the acoustic properties of sediments reflect their mineral compositions, fabrics, and degrees of compaction and cementation. Hence, the physical properties of indurated deep-sea sediments are of considerable geophysical and geological interest. Chalks and limestones are particularly important because substantial accumulations of biogenic carbonates are generally present at the base of the deep-sea sediment column, and high-standing features such as Hess Rise are capped by calcareous deposits. This paper constitutes a preliminary report of the compressional-wave velocities and densities of 31 indurated calcareous sediment samples recovered at DSDP Sites 463 and 465, in the Mid-Pacific Mountains and on Hess Rise, respectively. The sample set includes nine pairs of samples in which velocities were measured parallel and perpendicular to bedding to determine the velocity anisotropy of the sediment. This research is part of an ongoing study of the seismic properties of indurated deep-sea carbonates.
Resumo:
From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.
Resumo:
Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.