915 resultados para POLAR SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Miocene Globigerina Limestone of the Maltese islands contains widespread omission surfaces with very different characteristics and origins. The terminal Lower Globigerina Limestone hardground (TLGLHg) formed during a period of falling sea level. Coccolith assemblages suggest shallowness. Sedimentary structures and trace fossil assemblages, indicate increasing frequency of storm events and erosional episodes, towards the surface. Calcite cementation which took place around Thalassinoides burrows and formed irregular nodules was followed by dissolution of aragonite. It is suggested that lithification was linked to microbial reactions involving organic matter. In contrast two later surfaces, the terminal Middle Globigerina Limestone omissionground (TMGLOg), which marks the Lower to Middle Miocene boundary, and the Fomm-ir-Rih local hardground (FiRLHg) both contain early diagenetic dolomite. Lithification took place in two phases. The dolomite is interpreted to have formed beneath the sea floor: it was subsequently exhumed and partially corroded as the precipitation of calcitic and phosphatic cements took place around burrows open to the circulation of sea water. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent, foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of Weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural Weathering contexts. The weathering products comprise sub-mu m thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after similar to 1.1 ky are insufficiently continuous or impermeable to slow rates Of fluid-feldspar reactions, but provide valuable insights into the complex Weathering microenvironments oil debris and microbe-covered mineral surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a focused ion beam (FIB) instrument, electron-transparent samples (termed foils) have been cut from the naturally weathered surfaces of perthitic alkali feldspars recovered from soils overlying the Shap granite, northwest England. Characterization of these foils by transmission electron microscopy (TEM) has enabled determination of the crystallinity and chemical composition of near-surface regions of the feldspar and an assessment of the influence of intragranular microtextures on the microtopography of grain surfaces and development of etch pits. Damage accompanying implantation of the 30 kV Ga+ ions used for imaging and deposition of protective platinum prior to ion milling creates amorphous layers beneath outer grain surfaces, but can be overcome by coating grains with > 85 nm of gold before FIB work. The sidewalls of the foil and feldspar surrounding original voids are also partially amorphized during later stages of ion milling. No evidence was found for the presence of amorphous or crystalline weathering products or amorphous "leached layers" immediately beneath outer grain surfaces. The absence of a leached layer indicates that chemical weathering of feldspar in the Shap soils is stoichiometric, or if non-stoichiometric, either the layer is too thin to resolve by the TEM techniques used (i.e., <=similar to 2.5 nm) or an insufficient proportion of ions have been leached from near-surface regions so that feldspar crystallinity is maintained. No evidence was found for any difference in the mechanisms of weathering where a microbial filament rests on the feldspar surface. Sub-micrometer-sized steps on the grain surface have formed where subgrains and exsolution lamellae have influenced the propagation of fractures during physical weathering, whereas finer scale corrugations form due to compositional or strain-related differences in dissolution rates of albite platelets and enclosing tweed orthoclase. With progressive weathering, etch pits that initiated at the grain surface extend into grain interiors as etch tubes by exploiting preexisting networks of nanopores that formed during the igneous history of the grain. The combination of FIB and TEM techniques is an especially powerful way of exploring mechanisms of weathering within the "internal zone" beneath outer grain surfaces, but results must be interpreted with caution owing to the ease with which artifacts can be created by the high-energy ion and electron beams used in the preparation and characterization of the foils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New experiments underpin the interpretation of the basic division in crystallization behaviour of polyethylene in terms of whether or not there is time for the fold surface to order before the next molecular layer is added at the growth front. For typical growth rates, in Regime 11, polyethylene lamellae form with disordered {001} fold surfaces then transform, with lamellar thickening and twisting, towards the more-ordered condition found for slower crystallization in Regime 1, in which lamellae form with and retain {201} fold surfaces. Several linear and linear-low-density polyethylenes have been used to show that, for the same polymer crystallized alone or in a blend, the growth rate at which the change in initial lamellar condition occurs is reasonably constant thereby supporting the concept of a specific time for surfaces to attain the ordered {201}) state. This specific time, in the range from milliseconds to seconds, increases with molecular length, and in linear-low-density polymer, for higher branch contents. (c) 2006 Elsevier Ltd. All rights reserved.