952 resultados para PL emission
Resumo:
Acoustic emission avalanche distributions are studied in different alloy systems that exhibit a phase transition from a bcc to a close-packed structure. After a small number of thermal cycles through the transition, the distributions become critically stable (exhibit power-law behavior) and can be characterized by an exponent alpha. The values of alpha can be classified into universality classes, which depend exclusively on the symmetry of the resulting close-packed structure.
Resumo:
OBJECTIVE: To systematically review and meta-analyze published data about the diagnostic performance of Fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the assessment of pleural abnormalities in cancer patients. METHODS: A comprehensive literature search of studies published through June 2013 regarding the role of (18)F-FDG-PET and PET/CT in evaluating pleural abnormalities in cancer patients was performed. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odd ratio (DOR) of (18)F-FDG-PET or PET/CT on a per patient-based analysis were calculated. The area under the summary ROC curve (AUC) was calculated to measure the accuracy of these methods in the assessment of pleural abnormalities. Sub-analyses considering (18)F-FDG-PET/CT and patients with lung cancer only were carried out. RESULTS: Eight studies comprising 360 cancer patients (323 with lung cancer) were included. The meta-analysis of these selected studies provided the following results: sensitivity 86% [95% confidence interval (95%CI): 80-91%], specificity 80% [95%CI: 73-85%], LR+ 3.7 [95%CI: 2.8-4.9], LR- 0.18 [95%CI: 0.09-0.34], DOR 27 [95%CI: 13-56]. The AUC was 0.907. No significant improvement considering PET/CT studies only and patients with lung cancer was found. CONCLUSIONS: (18)F-FDG-PET and PET/CT demonstrated to be useful diagnostic imaging methods in the assessment of pleural abnormalities in cancer patients, nevertheless possible sources of false-negative and false-positive results should be kept in mind. The literature focusing on the use of (18)F-FDG-PET and PET/CT in this setting remains still limited and prospective studies are needed.
Resumo:
We study the (K-, p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density approach and the calculations are performed following two different procedures: one is based on a many-body method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method offers flexibility to account for processes other than kaon quasielastic scattering, such as K- absorption by one and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K-, the p, and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the produced hyperons into pi N. We find a limited sensitivity of the cross section to the strength of the kaon optical potential. We also show a serious drawback in the experimental setup-the requirement for having, together with the energetic proton, at least one charged particle detected in the decay counter surrounding the target-as we find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims made in the experimental paper on the strength of the kaon nucleus optical.
Resumo:
Measurements and simulations were performed to assess workers' exposure to solvent vapors and aerosols during the waterproofing of a tiled surface. This investigation followed two recent incidents in the same company where workers experienced acute respiratory illness after spraying a stain-repellent resin containing fluorinated polymers on stone-tiled walls and floors. Because the waterproofing activity had been done for years at the tile company without encountering any exposure problems prior to these cases, it was strongly suspected that the incidents were linked to a recent change in the composition of the coating mixture. Experimental measurements and simulations indicated that the emission rate of particles smaller than 10 microm may be estimated at 0.66 mg/sec (SD 0.10) for the old resin and at 0.37 mg/sec (SD 0.04) for the new one. The measurement of the solvent emission rate from surfaces coated with the two resins indicated that shortly after spraying, the emission was in the range of 18 to 20 mg/sec x m2 and was similar for both products. Solvent and overspray emission rates were introduced in a two-zone compartment model. The results obtained in the near-field indicate significant exposure to overspray mist (7 and 34 mg/m3 for new resin) and solvent vapors (80 to 350 ppm for the new resin). It was also shown that the introduction of the new resin tended to significantly decrease the levels of solvents and particulates in the workers' breathing zone. These results strongly suggest that cases of acute respiratory illness are related to the specific toxicity of the fluorinated polymer itself. The fact that the same polymer is used in various commercial products raises concern regarding other possible occupational and domestic exposures.
Resumo:
Contexte : La stimulation du nerf vague est une technique neurochirurgicale qui consiste en l'implantation d'une électrode envoyant des impulsions autours de celui-ci. Depuis l'approbation de la FDA en 1997 aux Etats-Unis, elle est utilisée chez certains patients épileptiques pharmaco-résistants et dont la chirurgie classique n'est pas envisageable [1], Par exemple lorsque qu'aucun foyer épileptique n'est identifiable, qu'une zone éloquente du cortex est atteinte ou encore qu'il y a de multiples points de départ. On parle généralement de patient « répondeur » lorsqu'une diminution de plus de 50% des crises est observée après l'opération. La proportion de patients répondeurs est estimée entre 20 à 50% [2], avec une action positive sur l'éveil [3]. Le mécanisme d'action de cette thérapie reste largement inconnu même si quelques ébauches d'hypothèses ont été formulées, notamment une action inhibitrice sur le noyau solitaire du nerf vague qui pourrait avoir comme effet de moduler des projections ascendantes diffuses via le locus coeruleus [3, 4]. Objectifs : Le but de ce travail est d'observer les effets de la stimulation du nerf vague sur le métabolisme cérébral et potentiellement d'élaborer des hypothèses sur le mécanisme d'action de ce traitement. Il faudra plus précisément s'intéresser au tronc cérébral, contenant le locus coeruleus (métabolisme de la noradrénaline) et aux noyaux du raphé (métabolisme de la sérotonine), deux neurotransmetteurs avec effet antiépileptique [5]. Le but sera également d'établir des facteurs prédictifs sur la façon de répondre d'un patient à partir d'une imagerie cérébrale fonctionnelle avant implantation, notamment au niveau du métabolisme cortical, particulièrement frontal (éveil) sera intéressant à étudier. Méthodes : Un formulaire d'information ainsi que de consentement éclairé sera remis à chaque patient avant inclusion dans l'étude. Les informations de chaque patient seront également inscrites dans un cahier d'observation (Case Report Form, CRF). Le travail s'organisera essentiellement sur deux populations. Premièrement, chez les patients déjà opérés avec un stimulateur en marche, nous réaliserons qu'une imagerie PET au F-18-fluorodeoxyglucose (FDG) post-opératoire qui seront comparés à une base de données de patients normaux (collaboration Dr E. Guedj, AP-HM, La Timone, Marseille). Nous confronterons également les images de ces patients entre elles, en opposant les répondeurs (diminution des crises de ≥50%) aux non-répondeurs. Deuxièmement, les patients non encore opérés auront un examen PET basal avant implantation et 3-6 mois après la mise en marche du stimulateur. Nous évaluerons alors les éventuelles modifications entre ces deux imageries PET, à la recherche de différences entre les répondeurs et non-répondeurs, ainsi que de facteurs prédictifs de bonne réponse dans l'imagerie de base. Toutes les comparaisons d'images seront effectuées grâce avec le programme d'analyse SPM08. Résultats escomptés : Nous espérons pouvoir mettre en évidence des modifications du métabolisme cérébral au FDG sur la base de ces différentes images. Ces constatations pourraient nous permettre de confirmer ou d'élargir les hypothèses physiologiques quant aux effets du traitement par stimulation vagale. Nous aimerions, de plus, amener à définir des facteurs prédictifs sur la façon de répondre d'un patient au traitement à l'aide du PET au F-18-FDG de départ avant implantation. Plus value escomptée : Ces résultats pourront donner des pistes supplémentaires quant au fonctionnement de la stimulation vagale chez les patients avec épilepsie réfractaire et servir de base à de nouvelles recherches dans ce domaine. Ils pourraient aussi donner des éléments pronostics avant l'implantation pour aider la sélection des patients pouvant bénéficier de ce type de thérapie.
Resumo:
Selostus: Maan märkyyden vaikutus ilman koostumukseen ja dityppioksidiemissioon hiuemaassa
Resumo:
In locally advanced cervical cancer, (18)F-fluorodeoxyglucose (FDG) positron emission tomography - computed tomography (PET/CT) has become important in the initial evaluation of disease extent. It is superior to other imaging modalities for lymph node status and distant metastasis. PET-defined cervical tumor volume predicts progression-free and overall survival. Higher FDG uptake in both primary and regional lymph nodes is strongly predictive of worse outcome. FDG-PET is useful for assessing treatment response 3 months after completing concurrent chemo-radiotherapy (CRT) and predicting long-term survival, and in suspected disease recurrence. In the era of image-guided adaptive radiotherapy, accurately defining disease areas is critical to avoid irradiating normal tissue. Based on additional information provided by FDG-PET, radiation treatment volumes can be modified and higher doses to FDG-positive lymph nodes safely delivered. FDG-PET/CT has been used for image-guided brachytherapy of FDG-avid tumor volume, while respecting low doses to bladder and rectum. Despite survival improvements due to CRT in cervical cancer, disease recurrences continue to be a major problem. Biological rationale exists for combining novel non-cytotoxic agents with CRT, and drugs targeting specific molecular pathways are under clinical development. The integration of these targeted therapies in clinical trials, and the need for accurate predictors of radio-curability is essential. New molecular imaging tracers may help identifying more aggressive tumors. (64)Cu-labeled diacetyl-di(N(4)-methylthiosemicarbazone) is taken up by hypoxic tissues, which may be valuable for prognostication and radiation treatment planning. PET/CT imaging with novel radiopharmaceuticals could further impact cervical cancer treatment as surrogate markers of drug activity at the tumor microenvironment level. The present article reviews the current and emerging role of PET/CT in the management of cervical cancer.
Resumo:
Among the greenhouse gases, nitrous oxide (N2O) is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2) and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N) and rice straw levels (0, 5 and 10 Mg ha-1), i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF), significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.
Resumo:
Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.
Resumo:
The early diagnostic value of glucose hypometabolism and atrophy as potential neuroimaging biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have been extensively explored using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI). The vast majority of previous imaging studies neglected the effects of single factors, such as age, symptom severity or time to conversion in MCI thus limiting generalisability of results across studies. Here, we investigated the impact of these factors on metabolic and structural differences. FDG-PET and MRI data from AD patients (n = 80), MCI converters (n = 65) and MCI non-converters (n = 64) were compared to data of healthy subjects (n = 79). All patient groups were split into subgroups by age, time to conversion (for MCI), or symptom severity and compared to the control group. AD patients showed a strongly age-dependent pattern, with younger patients showing significantly more extensive reductions in gray matter volume and glucose utilisation. In the MCI converter group, the amount of glucose utilisation reduction was linked to the time to conversion but not to atrophy. Our findings indicate that FDG-PET might be more closely linked to future cognitive decline whilst MRI being more closely related to the current cognitive state reflects potentially irreversible damage.
Resumo:
Preoperative imaging for resection of chest wall malignancies is generally performed by computed tomography (CT). We evaluated the role of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in planning full-thickness chest wall resections for malignancies. We retrospectively included 18 consecutive patients operated from 2004 to 2006 at our institution. Tumor extent was measured by CT and PET, using the two largest perpendicular tumor extensions in the chest wall plane to compute the tumor surface assuming an elliptical shape. Imaging measurements were compared to histopathology assessment of tumor borders. CT assessment consistently overestimated the tumor size as compared to PET (+64% vs. +1%, P<0.001). Moreover, PET was significantly better than CT at defining the size of lesions >24 cm(2) corresponding to a mean diameter >5.5 cm or an ellipse of >4 cm x 7.6 cm (positive predictive value 80% vs. 44% and specificity 93% vs. 64%, respectively). Metabolic PET imaging was superior to CT for defining the extent of chest wall tumors, particularly for tumors with a diameter >5.5 cm. PET can complement CT in planning full-thickness chest wall resection for malignancies, but its true value remains to be determined in larger, prospective studies.