876 resultados para PET fibers


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser transmission joining (LTJ) is growing in importance, and has the potential to become a niche technique for the fabrication of hybrid plastic-metal joints for medical device applications. The possibility of directly joining plastics to metals by LTJ has been demonstrated by a number of recent studies. However, a reliable and quantitative method for defining the contact area between the plastic and metal, facilitating calculation of the mechanical shear stress of the hybrid joints, is still lacking. A new method, based on image analysis using ImageJ, is proposed here to quantify the contact area at the joint interface. The effect of discolouration on the mechanical performance of the hybrid joints is also reported for the first time. Biocompatible polyethylene terephthalate (PET) and commercially pure titanium (Ti) were selected as materials for laser joining using a 200 W CW fibre laser system. The effect of laser power, scanning speed and stand-off distance between the nozzle tip and top surface of the plastic were studied and analysed by Taguchi L9 orthogonal array and ANOVA respectively. The surface morphology, structure and elemental composition on the PET and Ti surfaces after shearing/peeling apart were characterized by SEM, EDX, XRD and XPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, micro-joining of plastic parts to metal parts in medical devices is achieved by using medical adhesives, For example, pacemakers, defibrillators and neurological stimulators are designed using silicone adhesive to seal the joint between the polyurethane connector module and the titanium can [1]. Nevertheless, the use of adhesive is problematic because it requires a long time to cure and has high tendency to produce leachable products which might be harmful to the human body. An alternative for directly joining plastics to metal without adhesive is therefore required. Laser transmission joining (LTJ) is growing in importance, and has the potential to gain the niche in micro-fabrication of plastics-metal hybrid joints for medical device applications. The possibility of directly joining plastics to metal by LTJ technique have been demonstrated by a number of studies in recent literature [2]. The widely-accepted understanding of LTJ between plastics and metal is that generation and rapid expansion of micro-bubbles at the plastics-metal interface exert high local pressure to press the melted plastics towards the metal surface features during the laser processing [2]. This subsequently creates the plastics-metal hybrid joint by the mechanisms of mechanical interlocking as well as chemical and physical bonds between the plastics and metal surfaces. Although the micro-bubbles can help promote the mechanical interlocking effect to increase the joint strength, the creation of bubble is a random and complex process depending on the complicated interactions between the laser intensity, thermal degradation properties of plastics, surface temperature and topographical features of metal. In an ideal situation, it is desirable to create the hybrid plastics-metal joint without bubbles. However, the mechanical performance of the hybrid plastics-metal joint without bubbles is still unknown, and systematic comparison between the hybrid joints with and without bubbles is lacking in literature. This becomes the objective of this study. In this work, the laser process parameters were carefully chosen from a preliminary study, such that different hybrid joints: with and without bubbles can be produced and compared. Biocompatible PET and commercially pure Ti were selected as materials for laser joining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As comunicações quânticas aplicam as leis fundamentais da física quântica para codificar, transmitir, guardar e processar informação. A mais importante e bem-sucedida aplicação é a distribuição de chaves quânticas (QKD). Os sistemas de QKD são suportados por tecnologias capazes de processar fotões únicos. Nesta tese analisamos a geração, transmissão e deteção de fotões únicos e entrelaçados em fibras óticas. É proposta uma fonte de fotões única baseada no processo clássico de mistura de quatro ondas (FWM) em fibras óticas num regime de baixas potências. Implementamos essa fonte no laboratório, e desenvolvemos um modelo teórico capaz de descrever corretamente o processo de geração de fotões únicos. O modelo teórico considera o papel das nãolinearidades da fibra e os efeitos da polarização na geração de fotões através do processo de FWM. Analisamos a estatística da fonte de fotões baseada no processo clássico de FWM em fibras óticas. Derivamos um modelo teórico capaz de descrever a estatística dessa fonte de fotões. Mostramos que a estatística da fonte de fotões evolui de térmica num regime de baixas potências óticas, para Poissoniana num regime de potências óticas moderadas. Validamos experimentalmente o modelo teórico, através do uso de fotodetetores de avalanche, do método estimativo da máxima verossimilhança e do algoritmo de maximização de expectativa. Estudamos o processo espontâneo de FWM como uma fonte condicional de fotões únicos. Analisamos a estatística dessa fonte em termos da função condicional de coerência de segunda ordem, considerando o espalhamento de Raman na geração de pares de fotões, e a perda durante a propagação de fotões numa fibra ótica padrão. Identificamos regimes apropriados onde a fonte é quase ideal. Fontes de pares de fotões implementadas em fibras óticas fornecem uma solução prática ao problema de acoplamento que surge quando os pares de fotões são gerados fora da fibra. Exploramos a geração de pares de fotões através do processo espontâneo de FWM no interior de guias de onda com suceptibilidade elétrica de terceira ordem. Descrevemos a geração de pares de fotões em meios com elevado coeficiente de absorção, e identificamos regimes ótimos para o rácio contagens coincidentes/acidentais (CAR) e para a desigualdade de Clauser, Horne, Shimony, and Holt (CHSH), para o qual o compromisso entre perda do guia de onda e não-linearidades maximiza esses parâmetros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance imaging is a diagnostic tool used for detecting abnormal organs and tissues, often using Gd(III) complexes as contrast-enhancing agents. In this work, core–shell polymer fibers have been prepared using coaxial electrospinning, with the intent of delivering gadolinium (III) diethylenetriaminepentaacetate hydrate (Gd(DTPA)) selectively to the colon. The fibers comprise a poly(ethylene oxide) (PEO) core loaded with Gd(DTPA), and a Eudragit S100 shell. They are homogeneous, with distinct core–shell phases. The components in the fibers are dispersed in an amorphous fashion. The proton relaxivities of Gd(DTPA) are preserved after electrospinning. To permit easy visualization of the release of the active ingredient from the fibers, analogous materials are prepared loaded with the dye rhodamine B. Very little release is seen in a pH 1.0 buffer, while sustained release is seen at pH 7.4. The fibers thus have the potential to selectively deliver Gd(DTPA) to the colon. Mucoadhesion studies reveal there are strong adhesive forces between porcine colon mucosa and PEO from the core, and the dye-loaded fibers can be successfully used to image the porcine colon wall. The electrospun core–shell fibers prepared in this work can thus be developed as advanced functional materials for effective imaging of colonic abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução – O melanoma maligno cutâneo (MMC) é considerado uma das mais letais neoplasias e no seu seguimento recorre-se, para além dos exames clínicos e da análise de marcadores tumorais, a diversos métodos imagiológicos, como é o exame Tomografia por Emissão de Positrões/Tomografia Computorizada (PET/CT, do acrónimo inglês Positron Emission Tomography/Computed Tomography) com 18fluor-fluorodeoxiglucose (18F-FDG). O presente estudo tem como objetivo avaliar a utilidade da PET/CT relativamente à análise da extensão e à suspeita de recidiva do MMC, comparando os achados imagiológicos com os descritos em estudos CT. Metodologia – Estudo retrospetivo de 62 estudos PET/CT realizados em 50 pacientes diagnosticados com MMC. Excluiu-se um estudo cujo resultado era duvidoso (nódulo pulmonar). As informações relativas aos resultados dos estudos anatomopatológicos e dos exames imagiológicos foram obtidas através da história clínica e dos relatórios médicos dos estudos CT e PET/CT. Foi criada uma base de dados com os dados recolhidos através do software Excel e foi efetuada uma análise estatística descritiva. Resultados – Dos estudos PET/CT analisados, 31 foram considerados verdadeiros positivos (VP), 28 verdadeiros negativos (VN), um falso positivo (FP) e um falso negativo (FN). A sensibilidade, especificidade, o valor preditivo positivo (VPP), o valor preditivo negativo (VPN) e a exatidão da PET/CT para o estadiamento e avaliação de suspeita de recidiva no MMC são, respetivamente, 96,9%, 96,6%, 96,9%, 96,6% e 96,7%. Dos resultados da CT considerados na análise estatística, 14 corresponderam a VP, 12 a VN, três a FP e cinco a FN. A sensibilidade, especificidade, o VPP e o VPN e a exatidão da CT para o estadiamento e avaliação de suspeita de recidiva no MMC são, respetivamente, 73,7%, 80,0%, 82,4%, 70,6% e 76,5%. Comparativamente aos resultados CT, a PET/CT permitiu uma mudança na atitude terapêutica em 23% dos estudos. Conclusão – A PET/CT é um exame útil na avaliação do MMC, caracterizando-se por uma maior acuidade diagnóstica no estadiamento e na avaliação de suspeita de recidiva do MMC comparativamente à CT isoladamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Anxiety is a common problem in primary care and specialty medical settings. Treating an anxious patient takes more time and adds stress to staff. Unrecognised anxiety may lead to exam repetition, image artifacts and hinder the scan performance. Reducing patient anxiety at the onset is probably the most useful means of minimizing artifactual FDG uptake, both fat brown and skeletal muscle uptake, as well patient movement and claustrophobia. The aim of the study was to examine the effects of information giving on the anxiety levels of patients who are to undergo a PET/CT and whether the patient experience is enhanced with the creation of a guideline. Methodology: Two hundred and thirty two patients were given two questionnaires before and after the procedure to determine their prior knowledge, concerns, expectations and experiences about the study. Verbal information was given by one of the technologists after the completion of the first questionnaire. Results: Our results show that the main causes of anxiety in patients who are having a PET/CT is the fear of the procedure itself, and fear of the results. The patients who suffered from greater anxiety were those who were scanned during the initial stage of a disease. No significant differences were found between the anxiety levels pre procedural and post procedural. Findings with regard to satisfaction show us that the amount of information given before the procedure does not change the anxiety levels and therefore, does not influence patient satisfaction. Conclusions: The performance of a PET/CT scan is an important and statistically generator of anxiety. PET/CT patients are often poorly informed and present with a range of anxieties that may ultimately affect examination quality. The creation of a guideline may reduce the stress of not knowing what will happen, the anxiety created and may increase their satisfaction in the experience of having a PET/CT scan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 67-year-old woman was referred for staging of a mucosa-associated lymphoid tumor lymphoma involving the left conjunctiva. CT scan had shown paravertebral and pelvic masses, and a breast nodule. FDG PET/CT demonstrated moderately increased uptake in the left ocular conjunctiva and confirmed the paravertebral and pelvic masses and the breast nodule. Moreover, abnormal FDG uptake was shown in 2 breast nodules, the flank, the gluteus maximus, and the gastric cardia. The patient received 6 cycles of rituximab-bendamustine chemotherapy with a complete clinical and metabolic response at the 6-month follow-up PET/CT and remained relapse-free without visual acuity problem after a 36-month follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among PET radiotracers, FDG seems to be quite accepted as an accurate oncology diagnostic tool, frequently helpful also in the evaluation of treatment response and in radiation therapy treatment planning for several cancer sites. To the contrary, the reliability of Choline as a tracer for prostate cancer (PC) still remains an object of debate for clinicians, including radiation oncologists. This review focuses on the available data about the potential impact of Choline-PET in the daily clinical practice of radiation oncologists managing PC patients. In summary, routine Choline-PET is not indicated for initial local T staging, but it seems better than conventional imaging for nodal staging and for all patients with suspected metastases. In these settings, Choline-PET showed the potential to change patient management. A critical limit remains spatial resolution, limiting the accuracy and reliability for small lesions. After a PSA rise, the problem of the trigger PSA value remains crucial. Indeed, the overall detection rate of Choline-PET is significantly increased when the trigger PSA, or the doubling time, increases, but higher PSA levels are often a sign of metastatic spread, a contraindication for potentially curable local treatments such as radiation therapy. Even if several published data seem to be promising, the current role of PET in treatment planning in PC patients to be irradiated still remains under investigation. Based on available literature data, all these issues are addressed and discussed in this review.