946 resultados para PBS, phosphate buffered saline


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate homeostasis was studied in a monocotyledonous model plant through the characterization of the PHO1 gene family in rice (Oryza sativa). Bioinformatics and phylogenetic analysis showed that the rice genome has three PHO1 homologs, which cluster with the Arabidopsis (Arabidopsis thaliana) AtPHO1 and AtPHO1;H1, the only two genes known to be involved in root-to-shoot transfer of phosphate. In contrast to the Arabidopsis PHO1 gene family, all three rice PHO1 genes have a cis-natural antisense transcript located at the 5 ' end of the genes. Strand-specific quantitative reverse transcription-PCR analyses revealed distinct patterns of expression for sense and antisense transcripts for all three genes, both at the level of tissue expression and in response to nutrient stress. The most abundantly expressed gene was OsPHO1;2 in the roots, for both sense and antisense transcripts. However, while the OsPHO1;2 sense transcript was relatively stable under various nutrient deficiencies, the antisense transcript was highly induced by inorganic phosphate (Pi) deficiency. Characterization of Ospho1;1 and Ospho1;2 insertion mutants revealed that only Ospho1;2 mutants had defects in Pi homeostasis, namely strong reduction in Pi transfer from root to shoot, which was accompanied by low-shoot and high-root Pi. Our data identify OsPHO1;2 as playing a key role in the transfer of Pi from roots to shoots in rice, and indicate that this gene could be regulated by its cis-natural antisense transcripts. Furthermore, phylogenetic analysis of PHO1 homologs in monocotyledons and dicotyledons revealed the emergence of a distinct clade of PHO1 genes in dicotyledons, which include members having roles other than long-distance Pi transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of novel methods for parasitological diagnosis that are both highly sensitive and low in cost has been strongly recommended by the World Health Organization. In this study, a new technique for diagnosis of schistosomiasis mansoni is proposed based on the differential sedimentation of eggs when subjected to a slow continuous flux of 3% saline solution through a porous plaque. This influx suspends low-density faecal material, effectively cleaning the sample. The remaining sediment covering the porous plaque surface is then transferred to a glass slide and examined under a bright field microscope. Twelve Kato-Katz slides were used for comparison in the present study. Our results suggest that the saline gradient method detects a signifi-cantly higher number of eggs than the 12 Kato-Katz slides (p < 0.0001). We also found microscopic inspection to be quicker and easier with our newly described method. After cleaning the sample, the obtained sediment can also be conserved in a 10% formaldehyde solution and examined for at least 45 days later without statistically significant egg count differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test the ability of a novel phase-shifting medium (PSM) to provide sustained distension of the uterine cavity and produce saline infusion sonography (SIS)-like images in a simplified contrast ultrasound procedure. DESIGN: Prospective pilot feasibility trial of a new diagnostic procedure, contrast ultrasound. SETTING: Clinical reproductive endocrine and infertility unit of regional teaching hospital. PATIENT(S): Twenty-six asymptomatic infertile women (group I) and 27 women presenting with dysfunctional uterine bleeding (DUB) who were scheduled for exploratory surgery (group II). INTERVENTION(S): All women who were temporarily on oral contraceptive first had a regular pelvic ultrasound followed by the intrauterine instillation of up to 3 mL PSM, using a regular insemination catheter, after which all instruments were removed and a regular ultrasound was performed again. RESULT(S): In all 53 women, intrauterine instillation of 1-3 mL PSM resulted in a 3-7 mm uterine distension, sufficient to produce SIS-like images of the uterine cavity that lasted 7-10 min. Contrast ultrasound revealed an endometrial polyp in 3 asymptomatic women of group I. In group II. 12 of 14 women (86%) whose vaginal ultrasound were positive or dubious had positive findings with contrast ultrasound; 9 of 12 patients whose vaginal ultrasounds were negative also had positive contrast ultrasound findings. All the positive and negative findings of contrast ultrasound made in group II were confirmed anatomically (sensitivity and specificity of 100%), whereas the correlation for standard vaginal ultrasound was markedly lower at 57.1% and 85.7%, respectively. Most patients (46 of 53) reported no discomfort during or after the procedure, and 7 women described the procedure as mildly uncomfortable. CONCLUSION(S): Contrast ultrasound, a novel simple diagnostic procedure conducted after intrauterine instillation of 1-3 mL PSM using a simple plastic catheter, delivered SIS-quality images in asymptomatic (group I) and symptomatic (group II) patients while retaining the simplicity of standard ultrasound. We therefore foresee broad application of contrast ultrasound for sensitive and specific assessment for uterine pathologies in the physician's office.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 65 year old alcoholic man was hospitalized because he was tired, hypotonic, with postural tremor. The neurologic symptoms increased during the first two days despite an adequate therapy for alcoholic weaning with hydratation, benzodiazepines and vitamins. A severe hypophosphatemia is diagnosed, associated with hypovitaminosis D, mild hypomagnesemia, mild hypokaliemia and a refeeding syndrome. 24 hours after the normalisation of his phosphatemia, the neurologic symptoms are adjusted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.