922 resultados para PARASITE PLASMODIUM-FALCIPARUM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N-terminal domain of the circumsporozoite protein (CSP) has been largely neglected in the search for a malaria vaccine in spite of being a target of inhibitory antibodies and protective T cell responses in mice. Thus, in order to develop this region as a vaccine candidate to be eventually associated with other candidates and, in particular, with the very advanced C-terminal counterpart, synthetic constructs representing N- and C-terminal regions of Plasmodium falciparum and Plasmodium berghei CSP were administered as single or combined formulations in mice. We show that the antisera generated against the combinations inhibit sporozoite invasion of hepatocytes in vitro better than antisera against single peptides. Furthermore, two different P. falciparum CSP N-terminal constructs (PfCS22-110 and PfCS65-110) were recognized by serum samples from people living in malaria-endemic regions. Importantly, recognition of the short N-terminal peptide (PfCS65-110) by sera from children living in a malaria-endemic region was associated with protection from disease. Taken together, these results underline the potential of using such fragments as malaria vaccine candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to obtain transgenic tomato plants expressing the PfCP-2.9 protein (a chimera of the antigens MSP1 and AMA1 of Plasmodium falciparum). Cotyledons of seven-day-old tomatoes, cultivar Summers, were transformed via Agrobacterium tumefaciens. Transgenic expression in the T0 plants was verified in the DNA extracted from fruits. PCR analysis was used to test the presence of the gene of interest in the T1 generation. Reverse transcriptase PCR provided evidence of gene expression at the RNA level, and Western blot analysis confirmed the presence of the protein of interest in the T1 plants. This is the first report of successful transformation with the expression of a malaria antigen (PfCP-2.9) in transgenic tomato plants from the T0 and T1 generations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently described 95 predicted alpha-helical coiled-coil peptides derived from putative Plasmodium falciparum erythrocytic stage proteins. Seventy peptides recognized with the highest level of prevalence by sera from three endemic areas were selected for further studies. In this study, we sequentially examined antibody responses to these synthetic peptides in two cohorts of children at risk of clinical malaria in Kilifi district in coastal Kenya, in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Antibody levels from 268 children in the first cohort (Chonyi) were assayed against 70 peptides. Thirty-nine peptides were selected for further study in a second cohort (Junju). The rationale for the second cohort was to confirm those peptides identified as protective in the first cohort. The Junju cohort comprised of children aged 1-6 years old (inclusive). Children were actively followed up to identify episodes of febrile malaria in both cohorts. Of the 70 peptides examined, 32 showed significantly (p<0.05) increased antibody recognition in older children and 40 showed significantly increased antibody recognition in parasitaemic children. Ten peptides were associated with a significantly reduced odds ratio (OR) for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and AS202.11) were associated with a significantly reduced OR in both cohorts. LR146 is derived from hypothetical protein PFB0145c in PlasmoDB. Previous work has identified this protein as a target of antibodies effective in antibody dependent cellular inhibition (ADCI). The current study substantiates further the potential of protein PFB0145c and also identifies protein PF11_0424 as another likely target of protective antibodies against P. falciparum malaria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine human gene expression during uncomplicated P. falciparum malaria, we obtained three samples (acute illness, treatment, and recovery) from 10 subjects and utilized each subject's recovery sample as their baseline. At the time of acute illness (day 1), subjects had upregulation of innate immune response, cytokine, and inflammation-related genes (IL-1β, IL-6, TNF, and IFN-γ), which was more frequent with parasitemias >100,000 per μL and body temperatures ≥39°C. Apoptosis-related genes (Fas, BAX, and TP53) were upregulated acutely and for several days thereafter (days 1-3). In contrast, the expression of immune-modulatory (transcription factor 7, HLV-DOA, and CD6) and apoptosis inhibitory (c-myc, caspase 8, and Fas Ligand G) genes was downregulated initially and returned to normal with clinical recovery (days 7-10). These results indicate that the innate immune response, cytokine, and apoptosis pathways are upregulated acutely in uncomplicated malaria with concomitant downregulation of immune-modulatory and apoptosis inhibitory genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1a previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1a-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1a antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1 alpha previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1 alpha-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1 alpha antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pfs230, surface protein of gametocyte/gamete of the human malaria parasite, Plasmodium falciparum, is a prime candidate of malaria transmission-blocking vaccine. Plasmodium vivax has an ortholog of Pfs230 (Pvs230), however, there has been no study in any aspects on Pvs230 to date. To investigate whether Pvs230 can be a vivax malaria transmission-blocking vaccine, we performed evolutionary and population genetic analysis of the Pvs230 gene (pvs230: PVX_003905). Our analysis of Pvs230 and its orthologs in eight Plasmodium species revealed two distinctive parts: an interspecies variable part (IVP) containing species-specific oligopeptide repeats at the N-terminus and a 7.5 kb interspecies conserved part (ICP) containing 14 cysteine-rich domains. Pvs230 was closely related to its orthologs, Pks230 and Pcys230, in monkey malaria parasites. Analysis of 113 pvs230 sequences obtained from worldwide, showed that nucleotide diversity is remarkably low in the non-repeat 8-kb region of pvs230 (theta pi = 0.00118) with 77 polymorphic nucleotide sites, 40 of which results in amino acid replacements. A signature of purifying selection but not of balancing selection was seen on pvs230. Functional and/or structural constraints may limit the level of polymorphism in pvs230. The observed limited polymorphism in pvs230 should ground for utilization of Pvs230 as an effective transmission-blocking vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune evasion by Plasmodium falciparum is favored by extensive allelic diversity of surface antigens. Some of them, most notably the vaccine-candidate merozoite surface protein (MSP)-1, exhibit a poorly understood pattern of allelic dimorphism, in which all observed alleles group into two highly diverged allelic families with few or no inter-family recombinants. Here we describe contrasting levels and patterns of sequence diversity in genes encoding three MSP-1-associated surface antigens of P. falciparum, ranging from an ancient allelic dimorphism in the Msp-6 gene to a near lack of allelic divergence in Msp-9 to a more classical multi-allele polymorphism in Msp-7 Other members of the Msp-7 gene family exhibit very little polymorphism in non-repetitive regions. A comparison of P. falciparum Msp-6 sequences to an orthologous sequence from P. reichenowi provided evidence for distinct evolutionary histories of the 5` and 3` segments of the dimorphic region in PfMsp-6, consistent with one dimorphic lineage having arisen from recombination between now-extinct ancestral alleles. In addition. we uncovered two surprising patterns of evolution in repetitive sequence. Firsts in Msp-6, large deletions are associated with (nearly) identical sequence motifs at their borders. Second, a comparison of PfMsp-9 with the P. reichenowi ortholog indicated retention of a significant inter-unit diversity within an 18-base pair repeat within the coding region of P. falciparum, but homogenization in P. reichenowi. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The merozoite surface protein-2 (MSP-2) of Plasmodium falciparum comprises repeats flanked by dimorphic domains defining the allelic families FC27 and IC1. Here, we examined sequence diversity at the msp-2 locus in Brazil and its impact on MSP-2 antibody recognition by local patients. Only 25 unique partial sequences of msp-2 were found in 61 isolates examined. The finding of identical msp-2 sequences in unrelated parasites, collected 6-13 years apart, suggests that no major directional selection is exerted by variant-specific immunity in this malaria-endemic area. To examine antibody cross-reactivity, recombinant polypeptides derived from locally prevalent and foreign MSP-2 variants were used in ELISA. Foreign IC1-type variants, such as 3D7 (currently tested for human vaccination), were less frequently recognized than FC27-type and local IC1-type variants. Antibodies discriminated between local and foreign IC1-type variants, but cross-recognized structurally different local IC1-type variants. The use of evolutionary models of MSP-2 is suggested to design vaccines that minimize differences between local parasites and vaccine antigens. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)