958 resultados para PANCREATIC-ISLETS
Resumo:
Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating insulin release according to the organism's demand. Impairment of β-cell function due to hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune destruction of β-cells, results in diabetes onset. Both environmental factors and genetic predisposition are known to be involved in the development of the disease, but the exact mechanisms leading to β-cell dysfunction and death remain to be characterized. Non-coding RNA molecules, such as microRNAs (miRNAs), have been suggested to be necessary for proper β-cell development and function. The present review aims at summarizing the most recent findings about the role of non-coding RNAs in the control of β-cell functions and their involvement in diabetes. We will also provide a perspective view of the future research directions in the field of non-coding RNAs. In particular, we will discuss the implications for diabetes research of the discovery of a new communication mechanism based on cell-to-cell miRNA transfer. Moreover, we will highlight the emerging interconnections between miRNAs and epigenetics and the possible role of long non-coding RNAs in the control of β-cell activities.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.
Resumo:
In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.
Resumo:
Gastric lipase (HGL) contributes significantly to fat digestion. However, little is known about its neurohormonal regulation in humans. We studied the role of CCK and cholinergic mechanisms in the postprandial regulation of HGL and pancreatic lipase (HPL) secretion in six healthy subjects. Gastric emptying of a mixed meal and outputs of HGL, pepsin, acid, and HPL were determined with a double-indicator technique. Three experiments were performed in random order: intravenous infusion of 1) placebo, 2) low-dose atropine (5 micrograms.kg-.h-1), and 3) the CCK-A receptor antagonist loxiglumide (22 mumol.kg-.h-1). Atropine decreased postprandial outputs of HGL, pepsin, gastric acid, and HPL (P < 0.03) while slowing gastric emptying (P < 0.05). Loxiglumide markedly increased the secretion of HGL, pepsin, and acid while distinctly reducing HPL outputs and accelerating gastric emptying (P < 0.03). Plasma CCK and gastrin levels increased during loxiglumide infusion (P < 0.03). Atropine enhanced gastrin but not CCK release. Postprandial HGL, pepsin, and acid secretion are under positive cholinergic but negative CCK control, whereas HPL is stimulated by cholinergic and CCK mechanisms. We conclude that CCK and cholinergic mechanisms have an important role in the coordination of HGL and HPL secretion to optimize digestion of dietary lipids in humans.
Resumo:
The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic beta-cells, we evaluated their role by generating a model of insulin-secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature beta-cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose-induced insulin secretion.
Resumo:
We identified two distinct groups of patients in the 91 documented cases of pancreatic trauma (median age 8.0 years, range 0.6-15.8 years; M:F 2.5:1.0): 59 had a history of abdominal trauma and elevated serum lipase but no CT or ultrasound evidence of pancreatic injury (Group A); 32 had a history of abdominal trauma, elevated serum lipase but also had CT scan and/or ultrasound evidence of pancreatic injury (Group B). Patients with "less severe" injury based on normal imaging had a lower initial lipase level [Group A, median 651 U/L (interquartile range 520-1,324) vs. Group B, 1,608 U/L (interquartile range 680-3,526); p = 0.005] and shorter admission time [Group A, 9.0 days (interquartile range 5.5-15.5) vs. Group B, 13.4 days (interquartile range 6.8-23.8); p = 0.04]. There were no differences with respect to mortality (Group A, 13.5% vs. Group B, 12.5%), but patients with evidence of injury on imaging were more likely to have surgical intervention (p = 0.0001). The single most important overall cause of pancreatic trauma was involvement in a motor vehicle accident as a passenger or pedestrian. However, in children with high-grade ductal injury, bicycle handlebar injuries were most common. Associated injuries were common in both groups.
Resumo:
We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND: Pancreatic carcinoma remains a treatment-refractory cancer with a poor prognosis. Here, we compared anti-epidermal growth factor receptor (EGFR) and anti-HER2 monoclonal antibodies (2mAbs) injections with standard gemcitabine treatment on human pancreatic carcinoma xenografts. MATERIALS AND METHODS: Nude mice, bearing human pancreatic carcinoma xenografts, were treated with either combined anti-EGFR (cetuximab) and anti-HER2 (trastuzumab) or gemcitabine, and tumor growth was observed. RESULTS AND CONCLUSION: In first-line therapy, mice survival was significantly longer in the 2mAbs group compared with gemcitabine (P < 0.0001 for BxPC-3, P = 0.0679 for MiaPaCa-2 and P = 0.0019 for Capan-1) and with controls (P < 0.0001). In second-line therapy, tumor regressions were observed after replacing gemcitabine by 2mAbs treatment, resulting in significantly longer animal survival compared with mice receiving continuous gemcitabine injections (P = 0.008 for BxPC-3, P = 0.05 for MiaPaCa-2 and P < 0.001 for Capan-1). Therapeutic benefit of 2mAbs was observed despite K-Ras mutation. Interestingly, concerning the mechanism of action, coinjection of F(ab')(2) fragments from 2mAbs induced significant tumor growth inhibition, compared with controls (P = 0.001), indicating that the 2mAbs had an Fc fragment-independent direct action on tumor cells. This preclinical study demonstrated a significant improvement of survival and tumor regression in mice treated with anti-EGFR/anti-HER2 2mAbs in first- and second-line treatments, compared with gemcitabine, independently of the K-Ras status.
Resumo:
Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.
Resumo:
The pancreatic beta cell presents functional abnormalities in the early stages of development of non-insulin dependent diabetes mellitus (NIDDM). The disappearance of the first phase of insulin secretion induced by a glucose load is a early marker of NIDDM. This abnormality could be secondary to the low expression of the pancreatic glucose transporter GLUT2. Together with the glucokinase enzyme, GLUT2 is responsible for proper beta cell sensing of the extracellular glucose levels. In NIDDM, the GLUT2 mRNA levels are low, a fact which suggests a transcriptional defect of the GLUT2 gene. The first phase of glucose-induced insulin secretion by the beta pancreatic cell can be partly restored by the administration of a peptide discovered by a molecular approach, the glucagon-like peptide 1 (GLP-1). The gene encoding for the glucagon is expressed in a cell-specific manner in the A cells of the pancreatic islet and the L cells of the intestinal tract. The maturation process of the propeptide encoded by the glucagon gene is different in the two cells: the glucagon is the main hormone produced by the A cells whereas the glucagon-like peptide 1 (GLP-1) is the major peptide synthesized by the L cells of the intestine. GLP-1 is an incretin hormone and is at present the most potent insulinotropic peptide. The first results of the administration of GLP-1 to normal volunteers and diabetic patients are promising and may be a new therapeutic approach to treating diabetic patients.
Resumo:
Background: Ventilator-associated pneumonia (VAP) is the most common hospital-acquired, life-threatening infection. Poor outcome and health-care costs of nosocomial pneumonia remain a global burden. Currently, physicians rely on their experience to discriminate patients with good and poor outcome. However, standardized prognostic measures might guide medical decisions in the future. Pancreatic stone protein (PSP)/regenerating protein (reg) is associated with inflammation, infection, and other disease-related stimuli. The prognostic value of PSP/reg among critically ill patients is unknown. The aim of this pilot study was to evaluate PSP/reg in VAP.Methods: One hundred one patients with clinically diagnosed VAP were assessed. PSP/reg was retrospectively analyzed using deep-frozen serum samples from VAP onset up to day 7. The main end point was death within 28 days after VAP onset.Results: Serum PSP/reg was associated with the sequential organ failure assessment score from VAP onset (Spearman rank correlation coefficient 0.49 P < .001) up to day 7. PSP/reg levels at VAP onset were elevated in nonsurvivors (n = 20) as compared with survivors (117.0 ng/mL [36.1-295.3] vs 36.3 ng/mL [21.0-124.0] P = .011). The areas under the receiver operating characteristic curves of PSP/reg to predict mortality/survival were 0.69 at VAP onset and 0.76 at day 7. Two PSP/reg cutoffs potentially allow for identification of individuals with a particularly good and poor outcome. Whereas PSP/reg levels below 24 ng/mL at YAP onset were associated with a good chance of survival, levels above 177 ng/mL at day 7 were present in patients with a very poor outcome.Conclusions: Serum PSP/reg is a biomarker related to organ failure and outcome in patients with VAP.
Resumo:
PURPOSE: Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN: Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS: The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS: Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.
Resumo:
Nutrient ingestion triggers a complex hormonal response aimed at stimulating glucose utilization in liver, muscle and adipose tissue to minimize the raise in blood glucose levels. Insulin secretion by pancreatic beta cells plays a major role in this response. Although the beta cell secretory response is mainly controlled by blood glucose levels, gut hormones secreted in response to food intake have an important role in potentiating glucose-stimulated insulin secretion. These gluco-incretin hormones are GLP-1 (glucagon-like peptide-1) and GIP (gluco-dependent insulinotropic polypeptide). Their action on pancreatic beta cells depends on binding to specific G-coupled receptors linked to activation of the adenylyl cyclase pathway. In addition to their effect on insulin secretion both hormones also stimulate insulin production at the transcriptional and translational level and positively regulate beta cell mass. Because the glucose-dependent insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide is now developed as a novel therapeutic drug for this disease.
Resumo:
Pancreatic neuroendocrine tumors (pNETs) are infrequent malignancies which manifest in both functional (hormone-secreting) and more commonly non-functional (non-secreting) forms. The oral multitargeted tyrosine kinase inhibitor sunitinib and mammalian target of rapamycin (mTOR) inhibitor everolimus are approved as targeted therapies for patients with well-differentiated, non-resectable disease and evidence of disease progression. The recent approval of sunitinib for the management of advanced pNET is based on a continuous daily dosing (CDD) schedule that differs from the intermittent 4weeks on/2weeks off (4/2) schedule approved for sunitinib in advanced renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST). Therefore, although clinicians may be familiar with therapy management approaches for sunitinib in advanced RCC and GIST, there is less available experience for the management of patients with a CDD schedule. Here, we discuss the similarities and differences in the treatment of pNET with sunitinib compared with advanced RCC and GIST. In particular, we focus on the occurrence and management of sunitinib-related toxicity in patients with pNET by drawing on experience in these other malignancies. We aim to provide a relevant and useful guide for clinicians treating patients with pNET covering the management of events such as fatigue, mucositis, hand-foot syndrome, and hypertension.