904 resultados para Optimisation of methods
Resumo:
Mode of access: Internet.
Resumo:
This paper reports on continuing research into the modelling of an order picking process within a Crossdocking distribution centre using Simulation Optimisation. The aim of this project is to optimise a discrete event simulation model and to understand factors that affect finding its optimal performance. Our initial investigation revealed that the precision of the selected simulation output performance measure and the number of replications required for the evaluation of the optimisation objective function through simulation influences the ability of the optimisation technique. We experimented with Common Random Numbers, in order to improve the precision of our simulation output performance measure, and intended to use the number of replications utilised for this purpose as the initial number of replications for the optimisation of our Crossdocking distribution centre simulation model. Our results demonstrate that we can improve the precision of our selected simulation output performance measure value using Common Random Numbers at various levels of replications. Furthermore, after optimising our Crossdocking distribution centre simulation model, we are able to achieve optimal performance using fewer simulations runs for the simulation model which uses Common Random Numbers as compared to the simulation model which does not use Common Random Numbers.
Resumo:
In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.
Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.
In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.
Resumo:
2014
Resumo:
The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.
Resumo:
The conservation and valorisation of cultural heritage is of fundamental importance for our society, since it is witness to the legacies of human societies. In the case of metallic artefacts, because corrosion is a never-ending problem, the correct strategies for their cleaning and preservation must be chosen. Thus, the aim of this project was the development of protocols for cleaning archaeological copper artefacts by laser and plasma cleaning, since they allow the treatment of artefacts in a controlled and selective manner. Additionally, electrochemical characterisation of the artificial patinas was performed in order to obtain information on the protective properties of the corrosion layers. Reference copper samples with different artificial corrosion layers were used to evaluate the tested parameters. Laser cleaning tests resulted in partial removal of the corrosion products, but the lasermaterial interactions resulted in melting of the desired corrosion layers. The main obstacle for this process is that the materials that must be preserved show lower ablation thresholds than the undesired layers, which makes the proper elimination of dangerous corrosion products very difficult without damaging the artefacts. Different protocols should be developed for different patinas, and real artefacts should be characterised previous to any treatment to determine the best course of action. Low pressure hydrogen plasma cleaning treatments were performed on two kinds of patinas. In both cases the corrosion layers were partially removed. The total removal of the undesired corrosion products can probably be achieved by increasing the treatment time or applied power, or increasing the hydrogen pressure. Since the process is non-invasive and does not modify the bulk material, modifying the cleaning parameters is easy. EIS measurements show that, for the artificial patinas, the impedance increases while the patina is growing on the surface and then drops, probably due to diffusion reactions and a slow dissolution of copper. It appears from these results that the dissolution of copper is heavily influenced by diffusion phenomena and the corrosion product film porosity. Both techniques show good results for cleaning, as long as the proper parameters are used. These depend on the nature of the artefact and the corrosion layers that are found on its surface.
Resumo:
Il presente lavoro di tesi verte sull’analisi e l’ottimizzazione dei flussi di libri generati tra le diverse sedi della biblioteca pubblica, Trondheim folkebibliotek, situata a Trondheim, città del nord norvegese. La ricerca si inserisce nell’ambito di un progetto pluriennale, SmartLIB, che questa sta intraprendendo con l’università NTNU - Norwegian University of Science and Technology. L’obiettivo di questa tesi è quello di analizzare possibili soluzioni per ottimizzare il flusso di libri generato dagli ordini dei cittadini. Una prima fase di raccolta ed analisi dei dati è servita per avere le informazioni necessarie per procedere nella ricerca. Successivamente è stata analizzata la possibilità di ridurre i flussi andando ad associare ad ogni dipartimento la quantità di copie necessarie per coprire il 90% della domanda, seguendo la distribuzione di Poisson. In seguito, sono state analizzate tre soluzioni per ottimizzare i flussi generati dai libri, il livello di riempimento dei box ed il percorso del camion che giornalmente visita tutte le sedi della libreria. Di supporto per questo secondo studio è stato il Vehicle Routing Problem (VRP). Un modello simulativo è stato creato su Anylogic ed utilizzato per validare le soluzioni proposte. I risultati hanno portato a proporre delle soluzioni per ottimizzare i flussi complessivi, riducendo il delay time di consegna dei libri del 50%, ad una riduzione del 53% del flusso di box e ad una conseguente aumento del 44% del tasso di riempimento di ogni box. Possibili future implementazioni delle soluzioni trovate corrispondono all’installazione di una nuova Sorting Machine nella sede centrale della libreria ed all’implementazione sempre in quest’ultima di un nuovo schedule giornaliero.
Resumo:
Analytical results harmonisation is investigated in this study to provide an alternative to the restrictive approach of analytical methods harmonisation which is recommended nowadays for making possible the exchange of information and then for supporting the fight against illicit drugs trafficking. Indeed, the main goal of this study is to demonstrate that a common database can be fed by a range of different analytical methods, whatever the differences in levels of analytical parameters between these latter ones. For this purpose, a methodology making possible the estimation and even the optimisation of results similarity coming from different analytical methods was then developed. In particular, the possibility to introduce chemical profiles obtained with Fast GC-FID in a GC-MS database is studied in this paper. By the use of the methodology, the similarity of results coming from different analytical methods can be objectively assessed and the utility in practice of database sharing by these methods can be evaluated, depending on profiling purposes (evidential vs. operational perspective tool). This methodology can be regarded as a relevant approach for database feeding by different analytical methods and puts in doubt the necessity to analyse all illicit drugs seizures in one single laboratory or to implement analytical methods harmonisation in each participating laboratory.
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.
Resumo:
Originally from Asia, Dovyalis hebecarpa is a dark purple/red exotic berry now also produced in Brazil. However, no reports were found in the literature about phenolic extraction or characterisation of this berry. In this study we evaluate the extraction optimisation of anthocyanins and total phenolics in D. hebecarpa berries aiming at the development of a simple and mild analytical technique. Multivariate analysis was used to optimise the extraction variables (ethanol:water:acetone solvent proportions, times, and acid concentrations) at different levels. Acetone/water (20/80 v/v) gave the highest anthocyanin extraction yield, but pure water and different proportions of acetone/water or acetone/ethanol/water (with >50% of water) were also effective. Neither acid concentration nor time had a significant effect on extraction efficiency allowing to fix the recommended parameters at the lowest values tested (0.35% formic acid v/v, and 17.6 min). Under optimised conditions, extraction efficiencies were increased by 31.5% and 11% for anthocyanin and total phenolics, respectively as compared to traditional methods that use more solvent and time. Thus, the optimised methodology increased yields being less hazardous and time consuming than traditional methods. Finally, freeze-dried D. hebecarpa showed high content of target phytochemicals (319 mg/100g and 1,421 mg/100g of total anthocyanin and total phenolic content, respectively).
Resumo:
Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (Ac-NPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
In this work, a microwave-assisted extraction (MAE) methodology was compared with several conventional extraction methods (Soxhlet, Bligh & Dyer, modified Bligh & Dyer, Folch, modified Folch, Hara & Radin, Roese-Gottlieb) for quantification of total lipid content of three fish species: horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), and sardine (Sardina pilchardus). The influence of species, extraction method and frozen storage time (varying from fresh to 9 months of freezing) on total lipid content was analysed in detail. The efficiencies of methods MAE, Bligh & Dyer, Folch, modified Folch and Hara & Radin were the highest and although they were not statistically different, differences existed in terms of variability, with MAE showing the highest repeatability (CV = 0.034). Roese-Gottlieb, Soxhlet, and modified Bligh & Dyer methods were very poor in terms of efficiency as well as repeatability (CV between 0.13 and 0.18).
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.