943 resultados para Optimal solutions
Resumo:
In this paper we demonstrate that it is possible to gradually improve the performance of support vector machine (SVM) classifiers by using a genetic algorithm to select a sequence of training subsets from the available data. Performance improvement is possible because the SVM solution generally lies some distance away from the Bayes optimal in the space of learning parameters. We illustrate performance improvements on a number of benchmark data sets.
Resumo:
An analogous thinking task was used to test Nemeth's Convergent–Divergent theory of majority and minority influence. Participants read a (base) problem and one of three solutions (one of which is considered the ‘best' solution). They then generated solutions to a second (target) problem which shared similar structural features to the first problem. Due to the similarities between problems, the solution given to the first problem can be used as an analogy in solving the second. In contrast to Nemeth's theory, when the solution to the base problem was endorsed by a numerical majority there was not an increase in analogy-transfer in solving the target problem. However, in support of Nemeth's theory, when the base solution was supported by a numerical minority then the participants were more likely to generate the ‘best' solution to the target problem regardless of which base solution they were given. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
The task of smooth and stable decision rules construction in logical recognition models is considered. Logical regularities of classes are defined as conjunctions of one-place predicates that determine the membership of features values in an intervals of the real axis. The conjunctions are true on a special no extending subsets of reference objects of some class and are optimal. The standard approach of linear decision rules construction for given sets of logical regularities consists in realization of voting schemes. The weighting coefficients of voting procedures are done as heuristic ones or are as solutions of complex optimization task. The modifications of linear decision rules are proposed that are based on the search of maximal estimations of standard objects for their classes and use approximations of logical regularities by smooth sigmoid functions.
Resumo:
Supply chain operations directly affect service levels. Decision on amendment of facilities is generally decided based on overall cost, leaving out the efficiency of each unit. Decomposing the supply chain superstructure, efficiency analysis of the facilities (warehouses or distribution centers) that serve customers can be easily implemented. With the proposed algorithm, the selection of a facility is based on service level maximization and not just cost minimization as this analysis filters all the feasible solutions utilizing Data Envelopment Analysis (DEA) technique. Through multiple iterations, solutions are filtered via DEA and only the efficient ones are selected leading to cost minimization. In this work, the problem of optimal supply chain networks design is addressed based on a DEA based algorithm. A Branch and Efficiency (B&E) algorithm is deployed for the solution of this problem. Based on this DEA approach, each solution (potentially installed warehouse, plant etc) is treated as a Decision Making Unit, thus is characterized by inputs and outputs. The algorithm through additional constraints named “efficiency cuts”, selects only efficient solutions providing better objective function values. The applicability of the proposed algorithm is demonstrated through illustrative examples.
Resumo:
I explore and analyze a problem of finding the socially optimal capital requirements for financial institutions considering two distinct channels of contagion: direct exposures among the institutions, as represented by a network and fire sales externalities, which reflect the negative price impact of massive liquidation of assets.These two channels amplify shocks from individual financial institutions to the financial system as a whole and thus increase the risk of joint defaults amongst the interconnected financial institutions; this is often referred to as systemic risk. In the model, there is a trade-off between reducing systemic risk and raising the capital requirements of the financial institutions. The policymaker considers this trade-off and determines the optimal capital requirements for individual financial institutions. I provide a method for finding and analyzing the optimal capital requirements that can be applied to arbitrary network structures and arbitrary distributions of investment returns.
In particular, I first consider a network model consisting only of direct exposures and show that the optimal capital requirements can be found by solving a stochastic linear programming problem. I then extend the analysis to financial networks with default costs and show the optimal capital requirements can be found by solving a stochastic mixed integer programming problem. The computational complexity of this problem poses a challenge, and I develop an iterative algorithm that can be efficiently executed. I show that the iterative algorithm leads to solutions that are nearly optimal by comparing it with lower bounds based on a dual approach. I also show that the iterative algorithm converges to the optimal solution.
Finally, I incorporate fire sales externalities into the model. In particular, I am able to extend the analysis of systemic risk and the optimal capital requirements with a single illiquid asset to a model with multiple illiquid assets. The model with multiple illiquid assets incorporates liquidation rules used by the banks. I provide an optimization formulation whose solution provides the equilibrium payments for a given liquidation rule.
I further show that the socially optimal capital problem using the ``socially optimal liquidation" and prioritized liquidation rules can be formulated as a convex and convex mixed integer problem, respectively. Finally, I illustrate the results of the methodology on numerical examples and
discuss some implications for capital regulation policy and stress testing.
Resumo:
Spirulina platensis nanoparticles were prepared by mechanical agitation and were applied to removal Cr (VI) from aqueous solutions. Nanoparticles preparation was function of stirring rate and contact time. In the optimal conditions, Cr (VI) removal by nanoparticles as a function of pH and initial ion concentration was carried out. The optimal conditions for preparation were 10,000 rpm and 20 min, and the nanoparticles presented mean diameter of 215.6 nm and polydispersity index of 0.151. The best conditions for Cr (VI) removal were at pH 4 and ion concentration of 250 mg L 1, and the Cr (VI) removal percentage was 99.1%.
Resumo:
Creative ways of utilising renewable energy sources in electricity generation especially in remote areas and particularly in countries depending on imported energy, while increasing energy security and reducing cost of such isolated off-grid systems, is becoming an urgently needed necessity for the effective strategic planning of Energy Systems. The aim of this research project was to design and implement a new decision support framework for the optimal design of hybrid micro grids considering different types of different technologies, where the design objective is to minimize the total cost of the hybrid micro grid while at the same time satisfying the required electric demand. Results of a comprehensive literature review, of existing analytical, decision support tools and literature on HPS, has identified the gaps and the necessary conceptual parts of an analytical decision support framework. As a result this research proposes and reports an Iterative Analytical Design Framework (IADF) and its implementation for the optimal design of an Off-grid renewable energy based hybrid smart micro-grid (OGREH-SμG) with intra and inter-grid (μG2μG & μG2G) synchronization capabilities and a novel storage technique. The modelling design and simulations were based on simulations conducted using HOMER Energy and MatLab/SIMULINK, Energy Planning and Design software platforms. The design, experimental proof of concept, verification and simulation of a new storage concept incorporating Hydrogen Peroxide (H2O2) fuel cell is also reported. The implementation of the smart components consisting Raspberry Pi that is devised and programmed for the semi-smart energy management framework (a novel control strategy, including synchronization capabilities) of the OGREH-SμG are also detailed and reported. The hybrid μG was designed and implemented as a case study for the Bayir/Jordan area. This research has provided an alternative decision support tool to solve Renewable Energy Integration for the optimal number, type and size of components to configure the hybrid μG. In addition this research has formulated and reported a linear cost function to mathematically verify computer based simulations and fine tune the solutions in the iterative framework and concluded that such solutions converge to a correct optimal approximation when considering the properties of the problem. As a result of this investigation it has been demonstrated that, the implemented and reported OGREH-SμG design incorporates wind and sun powered generation complemented with batteries, two fuel cell units and a diesel generator is a unique approach to Utilizing indigenous renewable energy with a capability of being able to synchronize with other μ-grids is the most effective and optimal way of electrifying developing countries with fewer resources in a sustainable way, with minimum impact on the environment while also achieving reductions in GHG. The dissertation concludes with suggested extensions to this work in the future.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.